Gene-environment interactions in the postnatal period have a long-term impact on neurodevelopment. To effectively assess neurodevelopment in the mouse, we developed a behavioural pipeline that incorporates several validated behavioural tests to measure translationally relevant milestones of behaviour in mice. The behavioral phenotype of 1060 wild type and genetically-modified mice was examined followed by structural brain imaging at 4 weeks of age.
View Article and Find Full Text PDFSeveral lines of evidence demonstrate that microbiota influence brain development. Using high-resolution magnetic resonance imaging (MRI), this study examined the impact of microbiota status on brain volume and revealed microbiota-related differences that were sex and brain region dependent. Cortical and hippocampal regions demonstrate increased sensitivity to microbiota status during the first 5 weeks of postnatal life, effects that were greater in male germ-free mice.
View Article and Find Full Text PDFStructural covariance in brain anatomy is thought to reflect inter-regional sharing of developmental influences - although this hypothesis has proved hard to causally test. Here, we use neuroimaging in humans and mice to study sex-differences in anatomical covariance - asking if regions that have developed shared sex differences in volume across species also show shared sex difference in volume covariance. This study design illuminates both the biology of sex-differences and theoretical models for anatomical covariance - benefitting from tests of inter-species convergence.
View Article and Find Full Text PDFHemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns.
View Article and Find Full Text PDFIn vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals.
View Article and Find Full Text PDFFor information from sensory organs to be processed by the brain, it is usually passed to appropriate areas of the cerebral cortex. Almost all of this information passes through the thalamus, a relay structure that reciprocally connects to the vast majority of the cortex. The thalamus facilitates this information transfer through a set of thalamocortical connections that vary in cellular structure, molecular profiles, innervation patterns, and firing rates.
View Article and Find Full Text PDFBackground: Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d).
View Article and Find Full Text PDFIn vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-biased brain development in mammals, there have been no attempts to formally compare mouse and human sex differences across the whole brain to ascertain how well they translate. Addressing this question would shed critical light on use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals.
View Article and Find Full Text PDFIntroduction: As the population skews toward older age, elucidating mechanisms underlying human brain aging becomes imperative. Structural MRI has facilitated non-invasive investigation of lifespan brain morphology changes, yet this domain remains uncharacterized in rodents despite increasing use as models of disordered human brain aging.
Methods: Young (2m, = 10), middle-age (10m, = 10) and old (22m, = 9) mice were utilized for maturational (young vs.
CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital anomalies and Ear abnormalities) syndrome is a disorder caused by mutations in the gene encoding CHD7, an ATP dependent chromatin remodelling factor, and is characterised by a diverse array of congenital anomalies. These include a range of neuroanatomical comorbidities which likely underlie the varied neurodevelopmental disorders associated with CHARGE syndrome, which include intellectual disability, motor coordination deficits, executive dysfunction, and autism spectrum disorder. Cranial imaging studies are challenging in CHARGE syndrome patients, but high-throughput magnetic resonance imaging (MRI) techniques in mouse models allow for the unbiased identification of neuroanatomical defects.
View Article and Find Full Text PDFThe BTBR TItpr3/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains.
View Article and Find Full Text PDFAutism spectrum disorders caused by both genetic and environmental factors are strongly male-biased neuropsychiatric conditions. However, the mechanism underlying the sex bias of autism spectrum disorders remains elusive. Here, we use a mouse model in which the autism-linked gene Cttnbp2 is mutated to explore the potential mechanism underlying the autism sex bias.
View Article and Find Full Text PDF17q12 deletion (17q12Del) syndrome is a copy number variant (CNV) disorder associated with neurodevelopmental disorders and renal cysts and diabetes syndrome (RCAD). Using CRISPR/Cas9 genome editing, we generated a mouse model of 17q12Del syndrome on both inbred (C57BL/6N) and outbred (CD-1) genetic backgrounds. On C57BL/6N, the 17q12Del mice had severe head development defects, potentially mediated by haploinsufficiency of Lhx1, a gene within the interval that controls head development.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2022
Placental endocrine function is essential to fetal brain development. Placental hormones include neurosteroids such as allopregnanolone (ALLO), a regulator of neurodevelopmental processes positive allosteric modulation of the GABA receptor (GABA-R). Using a mouse model (plKO) in which the gene encoding the ALLO synthesis enzyme is specifically deleted in trophoblasts, we previously showed that placental ALLO insufficiency alters cerebellar white matter development and leads to male-specific autistic-like behavior.
View Article and Find Full Text PDFThe precise development of the neocortex is a prerequisite for higher cognitive and associative functions. Despite numerous advances that have been made in understanding neuronal differentiation and cortex development, our knowledge regarding the impact of specific genes associated with neurodevelopmental disorders on these processes is still limited. Here, we show that Taok2, which is encoded in humans within the autism spectrum disorder (ASD) susceptibility locus 16p11.
View Article and Find Full Text PDFAlthough initially showing great potential, oxytocin treatment has encountered a translational hurdle in its promise of treating the social deficits of autism. Some debate surrounds the ability of oxytocin to successfully enter the brain, and therefore modify neuroanatomy. Moreover, given the heterogeneous nature of autism, treatment will only amerliorate symptoms in a subset of patients.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) and congenital heart disease (CHD) are linked on a functional and genetic level. Most work has investigated CHD-related neurodevelopmental abnormalities. Cardiac abnormalities in ASD have been less studied.
View Article and Find Full Text PDFBackground: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability.
Methods: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used.
How changes in brain scaling relate to altered behavior is an important question in neurodevelopmental disorder research. Mice with germline haploinsufficiency ( ) closely mirror the abnormal brain scaling and behavioral deficits seen in humans with macrocephaly/autism syndrome, which is caused by mutations. We explored whether deviation from normal patterns of growth can predict behavioral abnormalities.
View Article and Find Full Text PDFKetogenic diet (KD) is a high-fat and low-carbohydrate therapy for medically intractable epilepsy, and its applications in other neurological conditions, including those occurring in children, have been increasingly tested. However, how KD affects childhood neurodevelopment, a highly sensitive and plastic process, is not clear. In this study, we explored structural, metabolic, and functional consequences of a brief treatment of a strict KD (weight ratio of fat to carbohydrate plus protein is approximately 6.
View Article and Find Full Text PDFAngelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS.
View Article and Find Full Text PDFCompromised placental function or premature loss has been linked to diverse neurodevelopmental disorders. Here we show that placenta allopregnanolone (ALLO), a progesterone-derived GABA-A receptor (GABAR) modulator, reduction alters neurodevelopment in a sex-linked manner. A new conditional mouse model, in which the gene encoding ALLO's synthetic enzyme (akr1c14) is specifically deleted in trophoblasts, directly demonstrated that placental ALLO insufficiency led to cerebellar white matter abnormalities that correlated with autistic-like behavior only in male offspring.
View Article and Find Full Text PDFBackground: Mutations in the X-linked gene DDX3X account for approximately 2% of intellectual disability in females, often comorbid with behavioral problems, motor deficits, and brain malformations. DDX3X encodes an RNA helicase with emerging functions in corticogenesis and synaptogenesis.
Methods: We generated a Ddx3x haploinsufficient mouse (Ddx3x females) with construct validity for DDX3X loss-of-function mutations.