Mutations can have deleterious fitness effects when they decrease protein specific activity or decrease active protein abundance. Mutations will also be deleterious when they cause misfolding or misinteractions that are toxic to the cell (i.e.
View Article and Find Full Text PDFKnowledge of the distribution of fitness effects (DFE) of mutations is critical to the understanding of protein evolution. Here, we describe methods for large-scale, systematic measurements of the DFE using growth competition and deep mutational scanning. We discuss techniques for producing comprehensive libraries of gene variants as well as provide necessary considerations for designing these experiments.
View Article and Find Full Text PDFThe distribution of fitness effects of mutation plays a central role in constraining protein evolution. The underlying mechanisms by which mutations lead to fitness effects are typically attributed to changes in protein specific activity or abundance. Here, we reveal the importance of a mutation's collateral fitness effects, which we define as effects that do not derive from changes in the protein's ability to perform its physiological function.
View Article and Find Full Text PDFCystatin C (CysC) is a versatile and ubiquitously-expressed member of the cysteine protease inhibitor family that is present at notably high concentrations in cerebrospinal fluid. Under mildly denaturing conditions, CysC forms inactive domain-swapped dimers. A destabilizing mutation, L68Q, increases the rate of domain-swapping and causes a fatal amyloid disease, hereditary cystatin C amyloid angiopathy.
View Article and Find Full Text PDF