J Clin Transl Endocrinol
June 2024
Cystic fibrosis (CF) has been traditionally viewed as a disease that affects White individuals. However, CF occurs among all races, ethnicities, and geographic ancestries. The disorder results from mutations in the ().
View Article and Find Full Text PDFCystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR.
View Article and Find Full Text PDFNetworks are ubiquitous throughout biology, spanning the entire range from molecules to food webs and global environmental systems. Yet, despite substantial efforts by the scientific community, the inference of these networks from data still presents a problem that is unsolved in general. One frequent strategy of addressing the structure of networks is the assumption that the interactions among molecular or organismal populations are static and correlative.
View Article and Find Full Text PDFChronic (long-lasting) infections are globally a major and rising cause of morbidity and mortality. Unlike typical acute infections, chronic infections are ecologically diverse, characterized by the presence of a polymicrobial mix of opportunistic pathogens and human-associated commensals. To address the challenge of chronic infection microbiomes, we focus on a particularly well-characterized disease, cystic fibrosis (CF), where polymicrobial lung infections persist for decades despite frequent exposure to antibiotics.
View Article and Find Full Text PDFThe complexity of the human body is a major roadblock to diagnosis and treatment of disease. Individuals may be diagnosed with the same disease but exhibit different biomarker profiles or physiological changes and, importantly, they may respond differently to the same risk factors and the same treatment. There is no doubt that computational methods of data analysis and interpretation must be developed for medicine to evolve from the traditional population-based approaches to personalized treatment strategies.
View Article and Find Full Text PDFMotivation: The assessment of graphs through crisp numerical metrics has long been a hallmark of biological network analysis. However, typical graph metrics ignore regulatory signals that are crucially important for optimal pathway operation, for instance, in biochemical or metabolic studies. Here we introduce adjusted metrics that are applicable to both static networks and dynamic systems.
View Article and Find Full Text PDF