ACS Appl Mater Interfaces
October 2023
Metal surgical pins and screws are employed in millions of orthopedic surgical procedures every year worldwide, but their usability is limited in the case of complex, comminuted fractures or in surgeries on smaller bones. Therefore, replacing such implants with a bone adhesive material has long been considered an attractive option. However, synthesizing a biocompatible bone adhesive with a high bond strength that is simple to apply presents many challenges.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a genetic disease of the sarcomere that causes otherwise unexplained cardiac hypertrophy and is associated with sudden death. While previous studies showed the role of the epigenetic modifier Brg1 in mouse models of HCM, additional work is needed to identify its role in humans. We tested the hypothesis that BRG1 expression is increased in periods of cardiac remodeling during fetal growth and in development of HCM.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
December 2022
Human cardiac organoid systems hold significant promise for mechanistic studies of early heart morphogenesis and an improved understanding of congenital cardiac disease.
View Article and Find Full Text PDFVentral hernia repair (VHR) with acellular dermal matrix (ADM) has high rates of recurrence that may be improved with allogeneic growth factor augmentation such as amniotic fluid allograft (AFA). We hypothesized that AFA would modulate the host response to improve ADM incorporation in VHR. Lewis rats underwent chronic VHR with porcine ADM alone or with AFA augmentation.
View Article and Find Full Text PDFPlatelet rich plasma (PRP) has been shown to improve incorporation and reduce inflammation in ventral hernia repair (VHR) with acellular dermal matrix (ADM). The concentration of platelets in PRP varies in clinical studies and an ideal concentration has yet to be defined. The effects of varied concentrations of PRP on ADM incorporation and inflammatory cell infiltration in a rat model of VHR.
View Article and Find Full Text PDFInfected hernia mesh is a cause of post-operative morbidity. Nitric oxide (NO) plays a key role in the endogenous immune response to infection. We sought to study the efficacy of a NO-releasing mesh against methicillin-resistant (MRSA).
View Article and Find Full Text PDFIncisional hernia is a common complication of hernia repair despite the development of various synthetic and bio-synthetic repair materials. Poor long-term mechanical strength, leading to high recurrence rates, has limited the use of acellular dermal matrices (ADMs) in ventral hernia repair (VHR). Biologically derived meshes have been an area of increasing interest.
View Article and Find Full Text PDFThe recurrence of ventral hernias continues to be a problem faced by surgeons, in spite of efforts toward implementing novel repair techniques and utilizing different materials to promote healing. Cadaveric acellular dermal matrices (Alloderm) have shown some promise in numerous surgical subspecialties, but these meshes still suffer from subsequent failure and necessitation of re-intervention. Here, it is demonstrated that the addition of platelet rich plasma to Alloderm meshes temporally modulates both the innate and cytotoxic inflammatory responses to the implanted material.
View Article and Find Full Text PDFPurpose Of Review: The development of biventricular repair and conversion pathways for patients with borderline hypoplastic heart disease represents an area of recent inquiry and innovation. This review summarizes emerging techniques and novel treatment algorithms for borderline hypoplastic heart disease with a focus on surgical advances within the last 10 years.
Recent Findings: Many patients with borderline hypoplastic heart disease are amenable to primary biventricular repair, or biventricular conversion following single-ventricle palliation coupled with ventricular rehabilitation strategies.
Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used.
View Article and Find Full Text PDF