Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized.
View Article and Find Full Text PDFFemtosecond laser pulses readily produce coherent quantum beats in transient-absorption spectra. These oscillatory signals often arise from molecular vibrations and therefore may contain information about the excited-state potential energy surface near the Franck-Condon region. Here, by fitting the measured spectra of two laser dyes to microscopic models of femtosecond coherence spectra (FCS) arising from molecular vibrations, we classify coherent quantum-beat signals as fundamentals or overtones and quantify their Huang-Rhys factors and anharmonicity values.
View Article and Find Full Text PDFBiliproteins are a unique class of photosynthetic proteins in their diverse, and at times, divergent biophysical function. The two contexts of photosynthetic light harvesting and photoreception demonstrate characteristically opposite criteria for success, with light harvesting demanding structurally-rigid chromophores which minimize excitation quenching, and photoreception requiring structural flexibility to enable conformational isomerization. The functional plasticity borne out in these two biological contexts is a consequence of the structural plasticity of the pigments utilized by biliproteins-linear tetrapyrroles, or bilins.
View Article and Find Full Text PDFThe attribution of quantum beats observed in the time-resolved spectroscopy of photosynthetic light-harvesting antennae to nontrivial quantum coherences has sparked a flurry of research activity beginning a decade ago. Even though investigations into the functional aspects of photosynthetic light-harvesting were supported by X-ray crystal structures, the non-covalent interactions between pigments and their local protein environment that drive such function has yet to be comprehensively explored. Using symmetry-adapted perturbation theory (SAPT), we have comprehensively determined the magnitude and compositions of these non-covalent interactions involving light-harvesting chromophores in two quintessential photosynthetic pigment-protein complexes - peridinin chlorophyll-a protein (PCP) from dinoflagellate Amphidinium carterae and phycocyanin 645 (PC645) from cryptophyte Chroomonas mesostigmatica.
View Article and Find Full Text PDFThe origin and role of oscillatory features detected in recent femtosecond spectroscopy experiments of photosynthetic complexes remain elusive. A key hypothesis underneath of these observations relies on electronic-vibrational resonance, where vibrational levels of an acceptor chromophore match the donor-acceptor electronic gap, accelerating the downhill energy transfer. Here we identify and detune such vibronic resonances using a high magnetic field that exclusively shifts molecular exciton states.
View Article and Find Full Text PDFSinglet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood.
View Article and Find Full Text PDFThe role of coherences, or coherently excited superposition states, in complex condensed-phase systems has been the topic of intense interest and debate for a number of years. In many cases, coherences have been utilized as spectators of ultrafast dynamics or for identifying couplings between electronic states. In rare cases, they have been found to drive excited state dynamics directly.
View Article and Find Full Text PDFQuantitative singlet fission has been observed for a variety of acene derivatives such as tetracene and pentacene, and efforts to extend the library of singlet fission compounds is of current interest. Preliminary calculations suggest anthradithiophenes exhibit significant exothermicity between the first optically-allowed singlet state, S, and 2 × T with an energy difference of >5000 cm. Given the fulfillment of this ingredient for singlet fission, here we investigate the singlet fission capability of a difluorinated anthradithiophene dimer (2ADT) covalently linked by a (dimethylsilyl)ethane bridge and derivatized by triisobutylsilylethynyl (TIBS) groups.
View Article and Find Full Text PDFWe have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates.
View Article and Find Full Text PDFThe fold of a protein is encoded by its amino acid sequence, but how complex multimeric proteins fold and assemble into functional quaternary structures remains unclear. Here we show that two structurally different phycobiliproteins refold and reassemble in a cooperative manner from their unfolded polypeptide subunits, without biological chaperones. Refolding was confirmed by ultrafast broadband transient absorption and two-dimensional electronic spectroscopy to probe internal chromophores as a marker of quaternary structure.
View Article and Find Full Text PDFIn this work, we demonstrate the use of broad-band pump-probe spectroscopy to measure femtosecond solvation dynamics. We report studies of a rhodamine dye in methanol and cryptophyte algae light-harvesting proteins in aqueous suspension. Broad-band impulsive excitation generates a vibrational wavepacket that oscillates on the excited-state potential energy surface, destructively interfering with itself at the minimum of the surface.
View Article and Find Full Text PDFThe conformational preferences of a series of short, aromatic-capped, glutamine-containing peptides have been studied under jet-cooled conditions in the gas phase. This work seeks a bottom-up understanding of the role played by glutamine residues in directing peptide structures that lead to neurodegenerative diseases. Resonant ion-dip infrared (RIDIR) spectroscopy is used to record single-conformation infrared spectra in the NH stretch, amide I and amide II regions.
View Article and Find Full Text PDFPossibilities offered by 2D visible spectroscopy for the investigation of the properties of excitons in colloidal semiconductor nanocrystals are overviewed, with a particular focus on their ultrafast dynamics. The technique of 2D electronic spectroscopy is illustrated with several examples showing its advantages compared to 1D ultrafast spectroscopic techniques (transient absorption and time-resolved photoluminescence).
View Article and Find Full Text PDFThe photochemistry and aggregation properties of methylene blue (MB) lead to its popular use in photodynamic therapy. The facile formation of strongly coupled "face-to-face" H-aggregates in concentrated aqueous solution, however, significantly changes its spectroscopic properties and photophysics. The photoinitiated dynamics of the simplest MB aggregate, MB2, was investigated over femtosecond to nanosecond time scales revealing sequential internal conversion events that fully relax the excited population.
View Article and Find Full Text PDFRecent work has proposed that coherent effects impact ultrafast electron transfer reactions. Here we report studies using broadband pump-probe and two-dimensional electronic spectroscopy of intramolecular nuclear motion on the time scale of the electron transfer between oxazine 1 (Ox1) and dimethylaniline (DMA). We performed time-frequency analysis on the time domain data to assign signal amplitude modulations to ground or excited electronic states in the reactive system (Ox1 in DMA) relative to the control system (Ox1 in chloronaphthalene).
View Article and Find Full Text PDFBroadband transient absorption and two-dimensional electronic spectroscopy (2DES) studies of methylene blue in aqueous solution are reported. By isolating the coherent oscillations of the nonlinear signal amplitude and Fourier transforming with respect to the population time, we analyzed a significant number of coherences in the frequency domain and compared them with predictions of the vibronic spectrum from density function theory (DFT) calculations. We show here that such a comparison enables reliable assignments of vibrational coherences to particular vibrational modes, with their constituent combination bands and overtones also being identified via Franck–Condon analysis aided by DFT.
View Article and Find Full Text PDFUltraviolet photofragmentation spectroscopy and infrared spectroscopy were performed on two prototypical guaiacyl (G)-type dilignols containing β-O-4 and β-β linkages, complexed with either lithium or sodium cations. The complexes were generated by nanoelectrospray ionization, introduced into a multistage mass spectrometer, and subsequently cooled in a 22-pole cold ion trap to T ≈ 10 K. A combination of UV photofragment spectroscopy and IR-UV double resonance spectroscopy was used to characterize the preferred mode of binding of the alkali metal cations and the structural changes so induced.
View Article and Find Full Text PDFUltraviolet spectroscopy of sinapoyl malate, an essential UV-B screening agent in plants, was carried out in the cold, isolated environment of a supersonic expansion to explore its intrinsic UV spectral properties in detail. Despite these conditions, sinapoyl malate displays anomalous spectral broadening extending well over 1000 cm(-1) in the UV-B region, presenting the tantalizing prospect that nature's selection of UV-B sunscreen is based in part on the inherent quantum mechanical features of its excited states. Jet-cooling provides an ideal setting in which to explore this topic, where complications from intermolecular interactions are eliminated.
View Article and Find Full Text PDFThe photoinduced dynamics of the lignin building blocks syringol, guaiacol, and phenol were studied using time-resolved ion yield spectroscopy and velocity map ion imaging. Following irradiation of syringol and guaiacol with a broad-band femtosecond ultraviolet laser pulse, a coherent superposition of out-of-plane OH torsion and/or OMe torsion/flapping motions is created in the first excited (1)ππ* (S1) state, resulting in a vibrational wavepacket, which is probed by virtue of a dramatic nonplanar → planar geometry change upon photoionization from S1 to the ground state of the cation (D0). Any similar quantum beat pattern is absent in phenol.
View Article and Find Full Text PDFUltraviolet spectroscopy of the G- and S-type lignin subunits, guaiacol (G) and syringol (S), along with their para-methylated derivatives 4-methylguaiacol (4-MG) and 4-methylsyringol (4-MS), has been carried out in the cold, isolated environment of a supersonic jet. The excitation spectra and dispersed fluorescence (DFL) spectra of G and 4-MG show strong S0-S1 origins and Franck-Condon activity involving both the ring modes typical of aromatic derivatives, and the four lowest frequency out-of-plane modes (a") and lowest in-plane mode (a') involving the OH and OCH3 groups. The four low-frequency out-of-plane modes undergo extensive Duschinsky mixing between the ground and excited state.
View Article and Find Full Text PDFThe spectroscopy of two flexible hydrocarbons, 1,2-diphenylethane (DPE) and 2,2,2-paracyclophane (TCP) is presented, and a predictive theoretical model for describing the alkyl CH stretch region of these hydrocarbons is developed. Ultraviolet hole-burning spectroscopy identified two isomers of DPE and a single conformation of TCP present in the supersonic jet expansion. Through the analysis of the ground state low-frequency vibronic spectroscopy obtained by dispersed fluorescence, conformational assignments were made for both DPE and TCP.
View Article and Find Full Text PDFSingle-conformation ultraviolet and infrared spectroscopy has been carried out on the neutral peptide series, Z-(Gly)(n)-OH, n = 1,3,5 (ZGn) and Z-(Gly)(5)-NHMe (ZG5-NHMe) in the isolated environment of a supersonic expansion. The N-terminal Z-cap (carboxybenzyl) provides an ultraviolet chromophore for resonant two-photon ionization (R2PI) spectroscopy. Conformation-specific infrared spectra were recorded in double resonance using resonant ion-dip infrared spectroscopy (RIDIRS).
View Article and Find Full Text PDF