Publications by authors named "Jacob Bart"

Purpose: To perform a systematic review of reporting trends and quantification methods for the minimal clinically important difference (MCID) within the hip arthroscopy literature.

Methods: Cochrane, PubMed, and OVID/MEDLINE databases were queried for hip arthroscopy articles that reported the MCID. Studies were classified as (1) calculating new MCID values for their specific study-population or (2) referencing previously established MCID values.

View Article and Find Full Text PDF

We present an in-depth study of the acetylation of benzyl alcohol in the presence of N, N-diisopropylethylamine (DIPEA) by nuclear magnetic resonance (NMR) monitoring of the reaction from 1.5 s to several minutes. We have adapted the NMR setup to be compatible to microreactor technology, scaling down the typical sample volume of commercial NMR probes (500 μL) to a microfluidic stripline setup with 150 nL detection volume.

View Article and Find Full Text PDF

Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional H, C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity.

View Article and Find Full Text PDF

The aim of data preprocessing is to remove data artifacts-such as a baseline, scatter effects or noise-and to enhance the contextually relevant information. Many preprocessing methods exist to deliver one or more of these benefits, but which method or combination of methods should be used for the specific data being analyzed is difficult to select. Recently, we have shown that a preprocessing selection approach based on Design of Experiments (DoE) enables correct selection of highly appropriate preprocessing strategies within reasonable time frames.

View Article and Find Full Text PDF

Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils.

View Article and Find Full Text PDF

The selection of optimal preprocessing is among the main bottlenecks in chemometric data analysis. Preprocessing currently is a burden, since a multitude of different preprocessing methods is available for, e.g.

View Article and Find Full Text PDF

Two types of microfluidic systems, a porous hollow fiber and a thin supported membrane with an array of micromachined holes, are investigated for concentrating mass-limited analyte samples. Water evaporation is driven by the partial pressure difference across the hydrophobic membrane, induced by dry sweeping gas on the permeate side. An analytical model permitting clarification of the contribution of design and process parameters on acquisition of concentrated solution and prediction of achievable concentration factors is presented.

View Article and Find Full Text PDF

In this work a novel room-temperature bonding technique based on chemically activated Fluorinated Ethylene Propylene (FEP) sheet as an intermediate between chemically activated substrates is presented. Surfaces of silicon and glass substrates are chemically modified with APTES bearing amine terminal groups, while FEP sheet surfaces are treated to form carboxyl groups and subsequently activated by means of EDC-NHS chemistry. The activation procedures of silicon, glass and FEP sheet are characterized by contact angle measurements and XPS.

View Article and Find Full Text PDF

A microfluidic high-resolution NMR flow probe based on a novel stripline detector chip is demonstrated. This tool is invaluable for the in situ monitoring of reactions performed in microreactors. As an example, the acetylation of benzyl alcohol with acetyl chloride was monitored.

View Article and Find Full Text PDF