Publications by authors named "Jacob A Aten"

The majority of the proteins involved in processing of DNA double-strand breaks (DSBs) accumulate at the damage sites. Real-time imaging and analysis of these processes, triggered by the so-called microirradiation using UV lasers or heavy particle beams, yielded valuable insights into the underlying DSB repair mechanisms. To study the temporal organization of DSB repair responses triggered by a more clinically-relevant DNA damaging agent, we developed a system coined X-ray multi-microbeam microscope (XM3), capable of simultaneous high dose-rate (micro)irradiation of large numbers of cells with ultra-soft X-rays and imaging of the ensuing cellular responses.

View Article and Find Full Text PDF

In S and G2 phase mammalian cells DNA double strand breaks (DSBs) can potentially be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). Results of several studies suggest that these two mechanistically distinct repair pathways can compete for DNA ends. Because HR and NHEJ differ with respect to error susceptibility, generation of chromosome rearrangements, which are potentially carcinogenic products of DSB repair, may depend on the pathway choice.

View Article and Find Full Text PDF

Defective homologous recombination (HR) DNA repair imposed by BRCA1 or BRCA2 deficiency sensitizes cells to poly (ADP-ribose) polymerase (PARP)-1 inhibition and is currently exploited in clinical treatment of HR-deficient tumors. Here we show that mild hyperthermia (41-42.5 °C) induces degradation of BRCA2 and inhibits HR.

View Article and Find Full Text PDF

Kinases execute pivotal cellular functions and are therefore widely investigated as potential targets in anticancer treatment. Here we analyze the kinase gene expression profiles of various tumor types and reveal the wee1 kinase to be overexpressed in glioblastomas. We demonstrate that WEE1 is a major regulator of the G(2) checkpoint in glioblastoma cells.

View Article and Find Full Text PDF

Agents that enhance the effectiveness of ionizing radiation have been investigated over many decades. A relatively new group of potential radiosensitizers consists of agents that inhibit histone acetyltransferases (HATs). This study evaluated the radiosensitizing properties of the HAT inhibitor anacardic acid (AA), used at a low-toxic concentration of 100 μM in V79, SW1573 and U2OS cells.

View Article and Find Full Text PDF

Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites.

View Article and Find Full Text PDF

Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-alpha, HP1-beta, and HP1-gamma are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are among the most dangerous types of DNA damage. Unrepaired, DSBs may lead to cell death, and when misrejoined, they can result in potentially carcinogenic chromosome rearrangements. The induction of DSBs and their repair take place in a chromatin microenvironment.

View Article and Find Full Text PDF

Understanding how cells maintain genome integrity when challenged with DNA double-strand breaks (DSBs) is of major importance, particularly since the discovery of multiple links of DSBs with genome instability and cancer-predisposition disorders. Ionizing radiation is the agent of choice to produce DSBs in cells; however, targeting DSBs and monitoring changes in their position over time can be difficult. Here we describe a procedure for induction of easily recognizable linear arrays of DSBs in nuclei of adherent eukaryotic cells by exposing the cells to alpha particles from a small Americium source (Box 1).

View Article and Find Full Text PDF

Background: Polyglutamine expansion disorders are caused by an expansion of the polyglutamine (polyQ) tract in the disease related protein, leading to severe neurodegeneration. All polyQ disorders are hallmarked by the presence of intracellular aggregates containing the expanded protein in affected neurons. The polyQ disorder SpinoCerebellar Ataxia 1 (SCA1) is caused by a polyQ-expansion in the ataxin-1 protein, which is thought to lead to nuclear aggregates.

View Article and Find Full Text PDF

Molecular oxygen is the primary oxidant in biological systems. The ultimate destination of oxygen in vivo is the mitochondria where it is used in oxidative phosphorylation. The ability of this process to produce an amount of high-energy phosphates adequate to sustain life highly depends on the available amount of oxygen.

View Article and Find Full Text PDF

Jacob Aten and Roland Kanaar highlight recent advances in understanding the physical organization of chromosomes in the nucleus.

View Article and Find Full Text PDF

Interactions between ends from different DNA double-strand breaks (DSBs) can produce tumorigenic chromosome translocations. Two theories for the juxta-position of DSBs in translocations, the static "contact-first" and the dynamic "breakage-first" theory, differ fundamentally in their requirement for DSB mobility. To determine whether or not DSB-containing chromosome domains are mobile and can interact, we introduced linear tracks of DSBs in nuclei.

View Article and Find Full Text PDF