Spatial control of gene expression, at the level of both transcription and translation, is critical for cellular differentiation [1-4]. In budding yeast, the conserved Ndr/warts kinase Cbk1 localizes to the new daughter cell, where it acts as a cell fate determinant. Cbk1 both induces a daughter-specific transcriptional program and promotes morphogenesis in a less well-defined role [5-8].
View Article and Find Full Text PDFThe budding yeast regulation of Ace2 and morphogenesis (RAM) network integrates cell fate determination and morphogenesis. Its disruption impairs polarized growth and causes mislocalization of the transcription factor Ace2, resulting in failure of daughter cell-specific transcription required for cell separation. We find that phosphoregulation of the conserved AGC family kinase Cbk1 is critical for RAM network function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2006
Opposing cellular responses are typically regulated by distinct sets of genes. However, tissue transglutaminase (TGase) provides an interesting example of a single gene product that has been implicated both in affording protection against cellular insults as well as in promoting cell death. Here, we shed some light on how these conflicting activities might be manifested by demonstrating that alternative transcripts of TGase differentially affect cell viability.
View Article and Find Full Text PDFTissue transglutaminase (TGase) exhibits both a GTP binding/hydrolytic capability and an enzymatic transamidation activity. Increases in TGase expression and activation often occur in response to stimuli that promote cellular differentiation and apoptosis, yet the signaling mechanisms used by these stimuli to regulate TGase expression and activation and the role of TGase in these cellular processes are not well understood. Retinoic acid (RA) consistently induces TGase expression and activation, and it was shown recently that RA-induced TGase expression was inhibited in NIH3T3 mouse fibroblasts co-stimulated with epidermal growth factor (EGF).
View Article and Find Full Text PDFACK2 (activated Cdc42-associated tyrosine kinase 2) is a specific downstream effector for Cdc42, a member of the Rho family of small G-proteins. ACK2 interacts with clathrin, an endocytic vesicle coating protein, and SH3PX1, a sorting nexin, and is involved in clathrin-mediated endocytosis. While searching for proteins that interact with ACK2, we found that HSP90 (heat-shock protein 90) binds to ACK2.
View Article and Find Full Text PDF