Publications by authors named "Jaclyn M Einstein"

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors.

View Article and Find Full Text PDF

The proper balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for normal hematopoiesis and is disrupted in hematologic malignancy. Among regulators of HSC fate, transcription factors have a well-defined central role, and mutations promote malignant transformation. More recently, studies have illuminated the importance of posttranscriptional regulation by RNA-binding proteins (RBPs) in hematopoiesis and leukemia development.

View Article and Find Full Text PDF

Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification).

View Article and Find Full Text PDF
Article Synopsis
  • Direct RNA sequencing can identify RNA modifications at precise locations but analyzing the raw data is challenging.
  • Researchers developed a software called MINES to classify and identify mA methylation sites using Oxford Nanopore technology, successfully annotating over 13,000 previously unannotated sites.
  • MINES also revealed more than 40,000 mA sites in a human epithelial cell line, highlighting the impact of specific enzymes on mA modifications.
View Article and Find Full Text PDF