IL-23/Th17 pathway has been identified to sustain inflammatory condition in several autoimmune diseases and therefore being targeted in various therapeutic and effective approaches. Patients affected with autoimmune myasthenia gravis exhibit a disease effector tissue, the thymus, that harbors ectopic germinal centers that sustain production of auto-antibodies, targeting proteins located in the neuromuscular junction, cause of the organ-specific chronic autoimmune disease. The present study aims to investigate the IL-23/Th17 cell pathway in the thymic inflammatory and pathogenic events.
View Article and Find Full Text PDFMyasthenia gravis (MG) with anti-acetylcholine receptor (AChR) Abs is an autoimmune disease characterized by severe defects in immune regulation and thymic inflammation. Because mesenchymal stem cells (MSCs) display immunomodulatory features, we investigated whether and how in vitro-preconditioned human MSCs (cMSCs) could treat MG disease. We developed a new humanized preclinical model by subcutaneously grafting thymic MG fragments into immunodeficient NSG mice (NSG-MG model).
View Article and Find Full Text PDFAutoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2015
Myasthenia gravis (MG) is an autoimmune disease in which the thymus frequently presents follicular hyperplasia and signs of inflammation and T cells display a defect in suppressive regulation. Defects in a suppressive assay can indicate either the defective function of Treg cells or the resistance of Tconv cells to suppression by Treg cells. The aim of this study was to determine which cells were responsible for this defect and to address the mechanisms involved.
View Article and Find Full Text PDFDeficient immunoregulation is consistently observed in autoimmune diseases. Here, we summarize the abnormalities of the T cell response in autoimmune myasthenia gravis (MG) by focusing on activation markers, inflammatory features, and imbalance between the different T cell subsets, including Th17 and regulatory T cells (T(reg) cells). In the thymus from MG patients, T(reg) cell numbers are normal while their suppressive function is severely defective, and this defect could not be explained by contaminating effector CD127(low) T cells.
View Article and Find Full Text PDFMyasthenia gravis (MG), a neuromuscular disease mediated by autoantibodies against the anti-acetylcholine receptor, is often associated with thymic hyperplasia characterized by ectopic germinal centers that contain autoreactive T and B cells. The MG thymus is the site of active neoangiogenic processes including the abnormal development of high endothelial venules (HEVs). This study tested the hypothesis that thymic HEVs and associated chemokines participate in MG pathology by mediating peripheral cell recruitment to the MG thymus.
View Article and Find Full Text PDFAcquired myasthenia gravis (MG), a neurological autoimmune disease, is caused by autoantibodies against components of the neuromuscular junction that lead to disabling muscle fatigability. The thymus is clearly involved in the pathogenesis of early-onset MG with anti-acetylcholine receptor antibodies, and thymic hyperplasia of lympho-proliferative origin is a hallmark of the disease. In this review, we describe the structural and cellular changes associated with thymic hyperplasia, its main characteristics being the development of ectopic germinal centers (GCs) associated with active neoangiogenic processes, such as development of high endothelial venules and lymphangiogenesis.
View Article and Find Full Text PDFYoung patients with myasthenia gravis (MG) frequently have ectopic GC in their thymus. We investigated these ectopic GC by microdissection of GC B cells and analysis of their Ig gene characteristics, in comparison to normal GC. CDR3 length distribution, a measure of clonal variability, and Ig gene family usage were similar in MG and normal tonsil samples.
View Article and Find Full Text PDFObjective: Myasthenia gravis (MG), a neuromuscular disease mediated by anti-acetylcholine receptor (AChR) autoantibodies, is associated with thymic hyperplasia characterized by ectopic germinal centers that contain pathogenic antibody-producing B cells. Our thymic transcriptome study demonstrated increased expression of CCL21, a recruiter of immune cells. Accordingly, we are investigating its implication in MG pathogenesis.
View Article and Find Full Text PDFThis review is dedicated to John Newsom-Davis, who was an exceptional colleague and friend, always exchanging ideas with respect and consideration. We shall not forget his involvement and passion in search for the truth on the role of thymectomy in the management of Myasthenia Gravis (MG). In this short review, we shall summarize what we learnt from DNA microarrays applied to MG thymus.
View Article and Find Full Text PDFMyasthenia gravis (MG) is an autoimmune disease mainly caused by antiacetylcholine receptor autoantibodies (seropositive (SP) disease) or by Abs against unknown autoantigenic target(s) (seronegative (SN) disease). Thymectomy is usually beneficial although thymic hyperplasia with ectopic germinal centers is mainly observed in SP MG. To understand the role of thymus in the disease process, we compared the thymic transcriptome of non-MG adults to those of SP patients with a low or high degree of hyperplasia or SN patients.
View Article and Find Full Text PDFMyasthenia gravis (MG) is associated with ectopic germinal centers in the thymus. Thymectomy and glucocorticoids are the main treatments but they induce operative risks and side effects, respectively. The aim of this study was to propose new therapies more efficient for MG.
View Article and Find Full Text PDFMyasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are autoimmune disorders in which the acetylcholine receptor (AChR) is the major autoantigen. Microarray technology was used to identify new potential drug targets for treatment of myasthenia that would reduce the need for the currently used nonspecific immunosuppression. The chemokine IFN-gamma-inducible protein 10 (IP-10; CXCL10), a CXC chemokine, and its receptor, CXCR3, were found to be overexpressed in lymph node cells of EAMG rats.
View Article and Find Full Text PDFTo explore the possible contribution of thymic myoid cells in tolerance induction mechanisms, we quantified by real-time RT-PCR, the expression of 12 muscle genes (the five subunits of acetylcholine receptor, Musk, rapsyn, utrophin, ErbB2, ErbB3, troponin T, and MCK) in a human thymic myoid cell line (MITC), compared to thymic epithelial cells (TEC) and thymocytes. Although expression of all the genes analyzed was detected in TEC and thymocytes, the level of expression in these cells was much lower than in MITC, except for -AChR, utrophin and ErbB3 genes. Since myoid cells express high level of most muscle genes and are consistently found in the thymic medulla, they may contribute to the mechanisms involved in the induction and maintenance of immune tolerance.
View Article and Find Full Text PDF