Inspired by biology's most sophisticated computer, the brain, neural networks constitute a profound reformulation of computational principles. Analogous high-dimensional, highly interconnected computational architectures also arise within information-processing molecular systems inside living cells, such as signal transduction cascades and genetic regulatory networks. Might collective modes analogous to neural computation be found more broadly in other physical and chemical processes, even those that ostensibly play non-information-processing roles? Here we examine nucleation during self-assembly of multicomponent structures, showing that high-dimensional patterns of concentrations can be discriminated and classified in a manner similar to neural network computation.
View Article and Find Full Text PDFEngineered far-from-equilibrium synthetic chemical networks that pulse or switch states in response to environmental signals could precisely regulate the kinetics of chemical synthesis or self-assembly. Currently, such networks must be extensively tuned to compensate for the different activities of and unintended reactions between a network's various chemical components. Modular elements with standardized performance could be used to rapidly construct networks with designed functions.
View Article and Find Full Text PDFLiving cells communicate information about physiological conditions by producing signaling molecules in a specific timed manner. Different conditions can result in the same total amount of a signaling molecule, differing only in the pattern of the molecular concentration over time. Such temporally coded information can be completely invisible to even state-of-the-art molecular sensors with high chemical specificity that respond only to the total amount of the signaling molecule.
View Article and Find Full Text PDFSixty-three Boer crossbred goats were used in 5 separate experiments (Exp. 1 to 5) to evaluate the effects of a commercial probiotic supplement on growth performance (Exp. 1 to 4), diet digestibility (Exp.
View Article and Find Full Text PDF