Electrochemical carbon dioxide (CO) conversion to hydrocarbon fuels, such as methane (CH), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO-to-CH conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH selectivity at high currents.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2021
A series of sodium phosphorothioate complexes are shown to have electrochemical properties attractive for sodium-sulfur battery applications across a wide operating temperature range. As cathode materials, they resolve a long-standing issue of cyclic liquid-solid phase transition that causes sluggish reaction kinetics and poor cycling stability in conventional, room-temperature sodium-sulfur batteries. The cathode chemistry yields 80% cyclic retention after 400 cycles at room temperature and a superior low-temperature performance down to -60 °C.
View Article and Find Full Text PDF