The human hepatocyte suspension model has been a valuable tool to study covalent binding (CVB) for compounds that form reactive metabolites. However, accurately measuring CVB values with the suspension model becomes challenging for metabolically low turnover compounds. In this study, we evaluated the HμREL human hepatocyte coculture model relative to existing literature using human hepatocyte suspension for drugs of known drug-induced liver injury category.
View Article and Find Full Text PDFThe NO-sGC-cGMP signaling pathway plays an important role in the cardiovascular system. Loss of nitric oxide tone or impaired signaling has been associated with cardiovascular diseases, such as hypertension, pulmonary hypertension and heart failure. Direct activation of sGC enzyme independent of NO represents a novel approach for modulating NO signaling with tremendous therapeutic potential.
View Article and Find Full Text PDFHepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 μM) for BSEP inhibition was established based on a relationship between BSEP IC values and the calculated maximal unbound concentration at the inlet of the human liver (fu*I, assay specificity = 98%).
View Article and Find Full Text PDFMK-8666, a selective GPR40 agonist developed for the treatment of type 2 diabetes mellitus, was discontinued in phase I clinical trials due to liver safety concerns. To address whether chemically reactive metabolites played a causative role in the observed drug induced liver injury (DILI), we characterized the metabolism, covalent binding to proteins, and amino acid targets of MK-8666 in rat and human hepatocytes or cofactor-fortified liver microsomes. MK-8666 was primarily metabolized to an acyl glucuronide in hepatocytes of both species and a taurine conjugate in rat hepatocytes.
View Article and Find Full Text PDFGPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet β-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet β-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM).
View Article and Find Full Text PDFPreviously disclosed benzimidazole-based DGAT1 inhibitors containing a cyclohexane carboxylic acid moiety suffer from isomerization at the alpha position of the carboxylic acid group, generating active metabolites which exhibit DGAT1 inhibition comparable to the corresponding parent compounds. In this report, we describe the design, synthesis and profiling of benzimidazole-based DGAT1 inhibitors with a [3.1.
View Article and Find Full Text PDFA potent and selective Factor IXa (FIXa) inhibitor was subjected to a series of liver microsomal incubations, which generated a number of metabolites. Using automated ligand identification system-affinity selection (ALIS-AS) methodology, metabolites in the incubation mixture were prioritized by their binding affinities to the FIXa protein. Microgram quantities of the metabolites of interest were then isolated through microisolation analytical capabilities, and structurally characterized using MicroCryoProbe heteronuclear 2D NMR techniques.
View Article and Find Full Text PDF1-{4-[(4-Phenyl-5-trifluoromethyl-2-thienyl)methoxy]benzyl}azetidine-3-carboxylic acid (MRL-A) is a potent sphingosine-1-phosphate-1 receptor agonist, with potential application as an immunosuppressant in organ transplantation or for the treatment of autoimmune diseases. When administered orally to rats, radiolabeled MRL-A was found to undergo metabolism to several reactive intermediates, and in this study, we have investigated its potential for protein modification in vivo and in vitro. MRL-A irreversibly modified liver and kidney proteins in vivo, in a dose- and time-dependent manner.
View Article and Find Full Text PDFA potent, selective glucagon receptor antagonist 9m, N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine, was discovered by optimization of a previously identified lead. Compound 9m is a reversible and competitive antagonist with high binding affinity (IC(50) of 6.6 nM) and functional cAMP activity (IC(50) of 15.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2011
A novel class of N-aryl-2-acylindole human glucagon receptor (hGCGR) antagonists is reported. These compounds demonstrate good pharmacokinetic profiles in multiple preclinical species. One compound from this series, indole 33, is orally active in a transgenic murine pharmacodynamic model.
View Article and Find Full Text PDFIn the course of the development of an aminobenzimidazole class of human glucagon receptor (hGCGR) antagonists, a novel class of cyclic guanidine hGCGR antagonists was discovered. Rapid N-dealkylation resulted in poor pharmacokinetic profiles for the benchmark compound in this series. A strategy aimed at blocking oxidative dealkylation led to a series of compounds with improved rodent pharmacokinetic profiles.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2008
The synthesis, selectivity, rat pharmacokinetic profile, and drug metabolism profiles of a series of potent fluoroolefin-derived DPP-4 inhibitors (4) are reported. A radiolabeled fluoroolefin 33 was shown to possess a high propensity to form reactive metabolites, thus revealing a potential liability for this class of DPP-4 inhibitors.
View Article and Find Full Text PDFA series of beta-substituted biarylphenylalanine amides were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4) for the treatment of type 2 diabetes. Optimization of the metabolic profile of early analogues led to the discovery of (2S,3S)-3-amino-4-(3,3-difluoropyrrolidin-1-yl)-N,N-dimethyl-4-oxo-2-(4-[1,2,4]triazolo[1,5-a]pyridin-6-ylphenyl)butanamide (6), a potent, orally active DPP-4 inhibitor (IC(50) = 6.3 nM) with excellent selectivity, oral bioavailability in preclinical species, and in vivo efficacy in animal models.
View Article and Find Full Text PDFInterest in the parkinsonian-inducing proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine has prompted extensive studies into the oxidative pathways mediating its bioactivation to the corresponding pyridinium species, a potent inhibitor of the mitochondrial electron transport chain. The initial step in the overall reaction is the two-electron ring alpha-carbon oxidation to give the 1-methyl-4-phenyl-2,3-dihydropyridinium species, a reaction that is catalyzed by monoamine oxidase B. The same a-carbon oxidation is catalyzed by members of the cytochrome P-450 family of oxidases.
View Article and Find Full Text PDF