Publications by authors named "Jackey Chen"

High-intensity eccentric exercise can lead to muscle damage and weakness. The 'repeated bout effect' (RBE) can attenuate these impairments when performing a subsequent bout. The influence of eccentric exercise-induced muscle damage on low-frequency force production is well-characterized; however, it is unclear how eccentric exercise and the RBE affect torque production across a range of stimulation frequencies (i.

View Article and Find Full Text PDF

Following active muscle shortening, steady-state isometric force is less than a purely isometric contraction at the same muscle length and level of activation; this is known as residual force depression (rFD). It is unknown whether rFD at the single muscle fiber level can be modified via training. Here we investigated whether rFD in single muscle fibers is modifiable through downhill and uphill running in the extensor digitorum longus (EDL) and soleus (SOL) muscles in rats.

View Article and Find Full Text PDF

High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output.

View Article and Find Full Text PDF

The passive mechanical behavior of skeletal muscle represents both important and generally underappreciated biomechanical properties with little attention paid to their trainability. These experiments were designed to gain insight into the trainability of muscle passive mechanical properties in both single fibers and fiber bundles. Rats were trained in two groups: 4 weeks of either uphill (UH) or downhill (DH) treadmill running; with a third group as sedentary control.

View Article and Find Full Text PDF

The increase or decrease in isometric force following active muscle lengthening or shortening, relative to a reference isometric contraction at the same muscle length and level of activation, are referred to as residual force enhancement (rFE) and residual force depression (rFD), respectively. The purpose of these experiments was to investigate the trainability of rFE and rFD on the basis of serial sarcomere number (SSN) alterations to history-dependent force properties. Maximal rFE/rFD measures from the soleus and extensor digitorum longus (EDL) of rats were compared after 4 weeks of uphill or downhill running with a no-running control.

View Article and Find Full Text PDF

When an isometric muscle contraction is immediately preceded by an active shortening contraction, a reduction in steady-state isometric force is observed relative to an isometric reference contraction at the same muscle length and level of activation. This shortening-induced reduction in isometric force, termed "residual force depression" (rFD), has been under investigation for over a half century. Various experimental models have revealed the positive relationship between rFD and the force and displacement performed during shortening, with rFD values ranging from 5 to 39% across various muscle groups, which appears to be due to a stress-induced inhibition of cross-bridge attachments.

View Article and Find Full Text PDF

The increase and decrease in steady-state isometric force following active muscle lengthening and shortening are referred to as residual force enhancement (RFE) and force depression (FD), respectively. The RFE and FD states are associated with decreased (activation reduction; AR) and increased (activation increase; AI) neuromuscular activity, respectively. Although the mechanisms have been discussed over the last 60 years, no studies have systematically investigated the modifiability of RFE and FD with training.

View Article and Find Full Text PDF

Background: The isometric steady-state following active lengthening is associated with greater torque production and lower activation, as measured by electromyographic activity (EMG), in comparison with a purely isometric contraction (ISO) at the same joint angle. This phenomenon is termed residual force enhancement (RFE). While there has been a great deal of research investigating the basic mechanisms of RFE, little work has been performed to understand the everyday relevance of RFE.

View Article and Find Full Text PDF