Publications by authors named "Jackeline de Siqueira Castro"

The present paper compared, through life cycle assessment (LCA), the production of aviation biofuel from two hydrothermal routes of microalgae cultivated in wastewater. Hydrothermal liquefaction (HTL) and gasification followed by Fischer-Tropsch synthesis (G + FT) were compared. Both routes included biomass production, hydrotreatment for biofuel upgrading, and product fractionation.

View Article and Find Full Text PDF

The current technical issues related to the conversion of algal biomass into aviation biofuel through hydrothermal liquefaction (HTL) and the upgrading of bio-oil through hydrotreatment have been reviewed and consolidated. HTL is a promising route for converting microalgae into sustainable aviation fuel (SAF). However, HTL must be followed by the hydrotreatment of bio-oil to ensure that its composition and properties are compatible with SAF standards.

View Article and Find Full Text PDF

Microalgae-based treatment can be applied to the bioremediation of agro-industrial wastewater, aiming at a circular economy approach. The present work compared the technical-environmental feasibility of operating a bubble column photobioreactor (PBR) and a high rate pond (HRP) for microalgae biomass production and wastewater treatment of a meat processing facility. The comparison was made regarding biomass productivity, phytoplankton composition, treatment efficiency, life cycle assessment, and energy balance.

View Article and Find Full Text PDF

With the increasing demand for food, it is increasingly important to maintain soil fertility with the application of fertilizers to supply the nutritional needs of plants. However, the nutrients applied to the soil can suffer significant losses, impacting the environment, and increasing production costs. Using alternative sources, such as microalgae biomass (MB) generated in the treatment of wastewater, in the production of organomineral fertilizers is a way to recover nutrients from the sewage, in addition to contributing to the improvement in soil fertility and favoring crop growth, which can guarantee agricultural sustainability.

View Article and Find Full Text PDF

Microalgae biomass (MB) is a promising source of renewable energy, especially when the cultivation is associated with wastewater treatment. However, microalgae wastewater technologies still have much to improve. Additionally, microalgae biomass valorization routes need to be optimized to be a sustainable and feasible source of green bioenergy.

View Article and Find Full Text PDF

Hydrothermal carbonization is a thermochemical treatment whose objective is to convert carbohydrate components of a given biomass into carbon-rich material in an aqueous medium. Biomass of wastewater grown microalgae is among the various potential biomasses for this route. However, operational parameters of hydrothermal carbonization for different types of biomass are still being investigated.

View Article and Find Full Text PDF

In order to ease one of the main challenges of biomass production in wastewater, the harvest stage, this study proposes as main innovations: the comparison of technical and environmental performance of different methods of harvesting biomass which have not been addressed in the literature and the projection of an optimal environmental scenario for biomass harvesting. For this, three harvesting methods were evaluated and compared, namely the gravitational sedimentation (GS) via settling tank, coagulation with tannin followed by gravitational sedimentation (TC/GS), and a biofilm reactor operated in parallel with a settling tank (BR/GS). TC/GS required less time to concentrate the biomass (121.

View Article and Find Full Text PDF

Microalgae are recognized as a potential source of biomass for obtaining bioenergy. However, the lack of studies towards economic viability and environmental sustainability of the entire production chain limits its large-scale application. The use of wastewaters economizes natural resources used for algal biomass cultivation.

View Article and Find Full Text PDF

Waste, especially biomass in general, is a large reservoir of nutrients that can be recovered through different technologies and used to produce biofertilizers. In the present study, environmental impacts of the production of microalgae biomass-based phosphate biofertilizer compared to triple superphosphate through life-cycle assessment conducted in the Simapro® software were investigated. The functional unit of the analysis was 163 g of P for both fertilizers.

View Article and Find Full Text PDF

The cultivation of microalgae in wastewater allows to obtain a biomass concentrated in nutrients and organic material. This biomass added to phosphate fertilizers can promote a slow release of the nutrient and consequently a higher absorption of phosphorus (P). The objective of this study was to investigate P uptake by plants subjected to triple superphosphate (TSP) fertilization, added with microalgae biomass (MB) grown in wastewater.

View Article and Find Full Text PDF

Microalgal biofilm in soils represents an alternative fertilization method for agricultural sustainability. In the present study, greenhouse gas emission, soil ammonia volatilization, and the growth of Pennisetum glaucum were evaluated under the effect of a microalgal biofilm, commercial urea, and a control (without application of a nitrogen source). CH emissions were equal for the three treatments (p>0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: