Reverse remodeling is a clinically relevant endpoint in heart failure with reduced ejection fraction (HFrEF). Rho-kinase (ROCK) signaling cascade activation correlates with cardiac remodeling and left ventricular (LV) systolic dysfunction in HFrEF patients. Cardiac resynchronization therapy (CRT) is effective in HFrEF, especially when there is a left bundle block, as this treatment may stimulate reverse remodeling, thereby improving quality of life and prolonging survival for patients with this severe condition.
View Article and Find Full Text PDFBackground: The intracellular ROCK signaling pathway is an important modulator of blood pressure and of cardiovascular and renal remodeling when Rho-kinase activity is increased. Besides, in preclinical models of diabetes, ROCK activation has also a role in abnormal glucose metabolism as well as in subsequent vascular and myocardial dysfunction. In humans, there are a few data assessing ROCK activation in patients with type 2 diabetes mellitus (T2D) and no studies assessing upstream/downstream components of the ROCK pathway.
View Article and Find Full Text PDFBackground: Increased Rho-kinase activity in circulating leucocytes is observed in heart failure with reduced ejection fraction (HFrEF). However, there is little information in HFrEF regarding other Rho-kinase pathway components an on the relationship between Rho-kinase and apoptosis. Here, Rho-kinase activation levels and phosphorylation of major downstream molecules and apoptosis levels were measured for the first time both in HFrEF patients and healthy individuals.
View Article and Find Full Text PDFHypertension-induced cardiovascular and renal damage can be mediated by activation of the renin-angiotensin-aldosterone system. There are different factors beyond renin-angiotensin-aldosterone system involved in hypertension and renal damage. Inflammation has emerged as an important mediator of hypertension and cardiovascular and kidney damage.
View Article and Find Full Text PDFRho-kinase has relevant functions in blood pressure modulation and cardiovascular remodeling. Rho-kinase activity is determined in circulating leukocytes measuring phosphorylation of its target myosin phosphatase target subunit 1 (MYPT1), but its relationship with Rho-kinase activity in the myocardium and in vasculature in hypertension has not been evaluated.The aim was to determine the degree of association between Rho-kinase cascade activation in circulating leukocytes with cardiac and aortic Rho-kinase pathway activation in a model of hypertension and to analyze it with a cause-effect perspective.
View Article and Find Full Text PDFObjective: The objective of this study was to determine the molecular mechanisms by which cardiac Rho-associated coiled-coil containing protein kinase (ROCK) activation after myocardial infarction (MI) does intervene in cardiac systolic function decline and remodeling.
Methods: Simultaneous measurement of different cardiac ROCK target proteins levels, in vivo left ventricular (LV) systolic function, myocardial fibrosis and hypertrophy in rats with MI under ROCK inhibition with fasudil.
Results: Seven days after MI, the ventricular mass increased significantly by 5.
Background: Little is known about the biological effects of angiotensin-(1-9), but available evidence shows that angiotensin-(1-9) has beneficial effects in preventing/ameliorating cardiovascular remodeling.
Objective: In this study, we evaluated whether angiotensin-(1-9) decreases hypertension and reverses experimental cardiovascular damage in the rat.
Methods And Results: Angiotensin-(1-9) (600 ng/kg per min for 2 weeks) reduced already-established hypertension in rats with early high blood pressure induced by angiotensin II infusion or renal artery clipping.