Objectives: This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states.
Methods: AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S.
Objectives: The aim of this study were to produce a multifunctional nanocomposite combining silver nanoaparticles (Ag), sodium trimetaphosphate (TMP) and fluoride (F), to investigate its effect on dental enamel demineralization and on biofilms of Streptococcus mutans and Candida albicans.
Methods: Bovine enamel blocks were submitted to five pH cycles and treated 2x/day with 100 ppm F, 225 ppm F, 100 ppm F + 0.2%TMP or 100 ppm F + 0.
Nanocomposites containing antimicrobial agents and calcium phosphates have been developed. Thus, this study assessed the effects of two compounds containing silver nanoparticles (AgNPs) and β-calcium glycerophosphate (CaGP), associated or not with tyrosol (TYR), against planktonic cells and biofilms of and . The nanocompounds were synthesized through chemical and '' processes and characterized by scanning electron microscopy.
View Article and Find Full Text PDFNanobiomaterials combining remineralization and antimicrobial abilities would bring important benefits to control dental caries. This study aimed to produce nanocompounds containing calcium glycerophosphate (CaGP) and silver nanoparticles (AgNP) by varying the reducing agent of silver nitrate (sodium borohydride (B) or sodium citrate (C)), the concentration of silver (1% or 10%), and the CaGP forms (nano or commercial), and analyze its characterization and antimicrobial activity against ATCC (10231) and (25175) by the microdilution method. Controls of AgNP were produced and silver ions (Ag⁺) were quantified in all of the samples.
View Article and Find Full Text PDFThis study aimed to synthesize and characterize materials containing silver nanoparticles (AgNP) with polyphosphates (sodium trimetaphosphate (TMP) or sodium hexametaphosphate (HMP), and evaluate their effect against Candida albicans and Streptococcus mutans. The minimum inhibitory concentration (MIC) was determined, which was followed by the quantification of the biofilm by counting colony-forming units (CFUs), the amount of metabolic activity, and the total biomass. The MICs revealed greater effectiveness of composites containing 10% Ag (TMP + Ag10% (T10) and HMP + Ag10% (H10)) against both microorganisms.
View Article and Find Full Text PDFObjectives: This study investigated the immediate and sustained effect of sodium trimetaphosphate (TMP) and sodium hexametaphosphate (HMP) associated or not with fluoride (F) on hydroxyapatite (HA) dissolution using an erosion-like model, considering as well as the influence of salivary coating.
Design: Baseline dissolution rates were determined for HA discs using a pH-stat system. In the first set of experiments, HA discs were treated with 1100μgF/mL, 1% or 8% of HMP, 1% or 8% of TMP and 1100μgF/mL associated with 1% or 8% of HMP or TMP, totaling 9 groups (n=8).
Purpose: To evaluate whether a low-fluoride dentifrice with calcium glycerophosphate (CaGP) reduced the demineralization process in situ.
Methods: A cross-over design with four treatment phases of 7 days each was used. Ten volunteers wore palatal devices containing four blocks of bovine dental enamel.
This study evaluated the effect of different concentrations of sodium trimetaphosphate (TMP) with and without fluoride (F) on the concentration of calcium (Ca), phosphorus (P) and F in hydroxyapatite (HA). Synthetic HA powder (0.15 g) was suspended (n=6) in solutions (75 mL) of TMP at 0%, 0.
View Article and Find Full Text PDF