This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed rearrangements that proceed exclusively by normal-sized ring cyclisation steps.
View Article and Find Full Text PDFMacrocycles and medium-sized rings are important in many scientific fields and technologies but are hard to make using current methods, especially on a large scale. Outlined herein is a strategy by which functionalized macrocycles and medium-sized rings can be prepared using cyclization/ring expansion (CRE) cascade reactions, without resorting to high dilution conditions. CRE cascade reactions are designed to operate exclusively via kinetically favorable 5-7-membered ring cyclization steps; this means that the problems typically associated with classical end-to-end macrocyclization reactions are avoided.
View Article and Find Full Text PDFA series of ring expansion reactions of PO-containing molecules have been developed for the synthesis of medium-sized ring cyclic phosphonate esters and phosphonamidates. The reactivity trends initially appear to be counter-intuitive, compared with more well established ring expansion reactions of lactam derivatives, but are explained by considering the differences in heteroatom bonding to P and C respectively.
View Article and Find Full Text PDFFront Genet
December 2021
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing.
View Article and Find Full Text PDF