The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS).
View Article and Find Full Text PDFThe clock drawing test (CDT) is a neuropsychological assessment tool to evaluate a patient's cognitive ability. In this study, we developed a ir and nterpretable epresentation of drawing tests () to evaluate and mitigate bias against people with lower education while predicting their cognitive status. We represented clock drawings with a 10-dimensional latent embedding using Relevance Factor Variational Autoencoder (RF-VAE) network pretrained on publicly available clock drawings from the National Health and Aging Trends Study (NHATS) dataset.
View Article and Find Full Text PDFThe clock drawing test is a simple and inexpensive method to screen for cognitive frailties, including dementia. In this study, we used the relevance factor variational autoencoder (RF-VAE), a deep generative neural network, to represent digitized clock drawings from multiple institutions using an optimal number of disentangled latent factors. The model identified unique constructional features of clock drawings in a completely unsupervised manner.
View Article and Find Full Text PDF