Publications by authors named "Jack Waters"

Image-based spatial transcriptomics platforms are powerful tools often used to identify cell populations and describe gene expression in intact tissue. Spatial experiments return large, high-dimension datasets and several open-source software packages are available to facilitate analysis and visualization. Spatial results are typically imperfect.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the lipid homeostasis pathways of bacterial pathogens, focusing on their biochemical functions and how they operate in complex environments like mammalian hosts.
  • Recent advancements in technology have revealed that host fatty acids play crucial roles beyond just membrane synthesis; they also influence virulence, pathogenesis, and collective bacterial behaviors.
  • The review integrates new biochemical and structural insights into lipid homeostasis and its metabolic connections, highlighting its importance to bacterial survival and success in various environments.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies.

View Article and Find Full Text PDF

We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos.

View Article and Find Full Text PDF

is consistently ranked among the most problematic multidrug-resistant bacterial pathogens in healthcare systems. Developing novel treatments requires a better understanding of its interaction with the host environment. Although bacteria can synthesize fatty acids, emerging findings suggest a potential preference for their acquisition from the host.

View Article and Find Full Text PDF
Article Synopsis
  • * This study analyzed over 600,000 single-cell transcriptomes from adult and developing mice to create a detailed classification of GABAergic neuron types, revealing a complex organization with numerous subclasses and clusters.
  • * The research found that GABAergic neurons often migrate long distances and show variations in gene expression based on their spatial locations, with different stages of development leading to diversity in specific neuron types across various brain regions.
View Article and Find Full Text PDF
Article Synopsis
  • The mammalian cortex consists of different cell types that have specific properties, which are important for understanding how the cortex functions in both health and disease.
  • Researchers utilized data from mouse and human studies to identify marker genes and enhancers for various cortical cell types, creating a comprehensive set of tools for targeting these cells specifically.
  • They introduced fifteen new transgenic driver lines, two new reporter lines, and over 800 enhancer AAVs, facilitating a wide range of experimental approaches to study the mammalian cortex and its functions.
View Article and Find Full Text PDF

The gradual loss of cerebral white matter contributes to cognitive decline during aging. However, microvascular networks that support the metabolic demands of white matter remain poorly defined. We used deep multi-photon imaging to characterize microvascular networks that perfuse cortical layer 6 and corpus callosum, a highly studied region of white matter in the mouse brain.

View Article and Find Full Text PDF

The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge.

View Article and Find Full Text PDF

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.

View Article and Find Full Text PDF

Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies on human cortex have shown that GABAergic neurons have a complex hierarchical organization with various subclasses and specific types.
  • Researchers used advanced techniques to study these neurons in human brain slices, combining viral labeling and single-cell RNA sequencing.
  • The findings revealed detailed differences within GABAergic neuron types, including variations between human and mouse neurons and highlighted the need for comprehensive analysis to better understand brain cell properties.
View Article and Find Full Text PDF

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1.

View Article and Find Full Text PDF

Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes.

View Article and Find Full Text PDF

is the primary causative agent of worldwide shigellosis. As the pathogen transverses the distinct niches of the gastrointestinal tract it necessitates dynamic adaptation strategies to mitigate host antimicrobials such as dietary fatty acids (FAs) and the bile salt, deoxycholate (DOC). This study investigates the dynamics of the cell envelope, by interrogating adaptations following FA or DOC exposure.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types.

View Article and Find Full Text PDF
Article Synopsis
  • * The understanding of small vessel disease in AD and related dementias is limited, complicating the identification of appropriate treatment targets.
  • * Advances in imaging techniques for studying rodent brains enable researchers to observe microvascular pathology in real-time, enhancing our comprehension of how vascular factors contribute to AD and related dementias.
View Article and Find Full Text PDF
Article Synopsis
  • The brain of a mouse has millions of different cells, and scientists want to make a complete list of these cell types to understand how the brain works.
  • Researchers created a detailed map of these cells by studying around 7 million cells with a special technique that looks at their genes and how they are placed in the brain.
  • They discovered that there are many different types of cells in the brain, with some areas being very unique, like the dorsal part having fewer but more distinct types, while the ventral part has many similar types.
View Article and Find Full Text PDF

Motion/direction-sensitive and location-sensitive neurons are the two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It is under debate whether motion/direction-sensitive inputs preferentially target the superficial layers in V1, as opposed to the location-sensitive inputs, which preferentially target the middle layers. Here, by using calcium imaging to measure the activity of motion/direction-sensitive and location-sensitive axons in V1, we find evidence against these cell-type-specific laminar biases at the population level.

View Article and Find Full Text PDF

Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium's lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via synthesis.

View Article and Find Full Text PDF

Acinetobacter baumannii is one of the world's most problematic nosocomial pathogens. The combination of its intrinsic resistance and ability to acquire resistance markers allow this organism to adjust to antibiotic treatment. Despite being the primary barrier against antibiotic stress, our understanding of the A.

View Article and Find Full Text PDF

Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials.

View Article and Find Full Text PDF

Fluorescent calcium indicators are often used to investigate neural dynamics, but the relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be detected when the soma almost fills the microscope's field of view, but calcium indicators are used to image populations of neurons, necessitating a large field of view, generating fewer photons per neuron, and compromising AP detection. Here, we characterized the AP-fluorescence transfer function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or GCaMP6f.

View Article and Find Full Text PDF

Neurophysiology studies require the use of inclusion criteria to identify neurons responsive to the experimental stimuli. Five recent studies used calcium imaging to measure the preferred tuning properties of layer 2/3 pyramidal neurons in mouse visual areas. These five studies employed different inclusion criteria and reported different, sometimes conflicting results.

View Article and Find Full Text PDF

Widefield fluorescence microscopy is used to monitor the spiking of populations of neurons in the brain. Widefield fluorescence can originate from indicator molecules at all depths in cortex and the relative contributions from somata, dendrites, and axons are often unknown. Here, I simulate widefield illumination and fluorescence collection and determine the main sources of fluorescence for several GCaMP mouse lines.

View Article and Find Full Text PDF