Publications by authors named "Jack U Flanagan"

PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown.

View Article and Find Full Text PDF

The natural product (-)-TAN-2483B is a fungal secondary metabolite which displays promising anti-cancer and immunomodulatory activity. Our previous syntheses of (-)-TAN-2483B and sidechain analogues uncovered inhibitory activity against Bruton's tyrosine kinase (Btk), an established drug target for various leukaemia and immunological diseases. A structure-based computational study using ensemble docking and molecular dynamics was performed to determine plausible binding modes for (-)-TAN-2483B and analogues in the Btk binding site.

View Article and Find Full Text PDF
Article Synopsis
  • IDO1 is a protein that many cancers use to avoid being attacked by the immune system, and combining IDO1 inhibitors with other immune therapies may enhance cancer treatment effectiveness.* -
  • Researchers engineered murine tumor cells to express either human or mouse forms of IDO1 and TDO2 to test new small molecule inhibitors and understand their species and isoenzyme specificity.* -
  • The most effective IDO1 inhibitor discovered, W-0019482, was shown to reduce harmful ratios of certain metabolites in mice and slow down tumor growth, leading to the creation of modified versions that can inhibit both IDO1 and TDO2.*
View Article and Find Full Text PDF

The discoidin domain receptor tyrosine kinases DDR1 and DDR2 are distinguished from other kinase enzymes by their extracellular domains, which interact with collagen rather than with peptidic growth factors, before initiating signaling via tyrosine phosphorylation. They share significant sequence and structural homology with both the c-Kit and Bcr-Abl kinases, and so many inhibitors of those kinases are also effective. Nevertheless, there has been an extensive research effort to develop potent and specific DDR inhibitors.

View Article and Find Full Text PDF

The expression of tryptophan catabolising enzyme indoleamine 2,3-dioxygenase 1 (IDO1) or tryptophan 2,3-dioxygenase 2 (TDO2) in cancers is associated with suppressed immunity and poor patient prognosis. Results from human clinical trials of IDO1 inhibitors have been disappointing. There is now a strong interest in the development of TDO2-selective or dual IDO1/TDO2 inhibitors that may surpass IDO1 inhibitors by providing broader efficacy and blocking constitutively-expressed hepatic TDO2.

View Article and Find Full Text PDF
Article Synopsis
  • The PI3K pathway is identified as a potential target for melanoma therapy, showcasing significant genetic diversity among the early passage cell lines derived from metastatic melanomas.
  • A majority of these cell lines exhibited upregulation of the PI3K pathway through various mechanisms, including genetic alterations in key PI3K components like PIK3CA and regulatory subunits.
  • Inhibitors targeting the PI3K pathway showed variable effectiveness, with mTOR-selective or dual inhibitors proving to be effective against all tested lines, including those resistant to other treatments.
View Article and Find Full Text PDF

Introduction: Colony stimulating factor 1 receptor (CSF-1R, also known as c-FMS kinase) is in the class III receptor tyrosine kinase family, along with c-Kit, Flt3 and PDGFRα. CSF-1/CSF-1R signaling promotes the differentiation and survival of myeloid progenitors into populations of monocytes, macrophages, dendritic cells and osteoclasts, as well as microglial cells and also recruits host macrophages to develop into tumor-associated macrophages (TAMs), which promote tumor progression and metastasis.

Areas Covered: In the last 5 years, and recently stimulated by the approval of pexidartinib (Turalio™, Daiichi Sankyo) in 2019 for the treatment of tenosynovial giant cell tumors, there has been a large increase in activity (both journal articles and patent applications) around small molecule inhibitors of CSF1R.

View Article and Find Full Text PDF

Class B G protein-coupled receptors are highly therapeutically relevant but challenges remain in identifying suitable small-molecule drugs. The calcitonin-like receptor (CLR) in particular is linked to conditions such as migraine, cardiovascular disease, and inflammatory bowel disease. The CLR cannot act as a cell-surface receptor alone but rather must couple to one of three receptor activity-modifying proteins (RAMPs), forming heterodimeric receptors for the peptides adrenomedullin and calcitonin gene-related peptide.

View Article and Find Full Text PDF

A novel peptide stapling method effected by a double thiol-ene reaction between two cysteine residues and a divinyl diester to access stapled peptides with enhanced cell permeability is reported. This diverse chemical tool kit provides facile access to stapled peptides with varying bridge lengths. Stapled Axin mimetics were synthesised by using this stapling method resulting in improved α-helicity relative to the unstapled peptide.

View Article and Find Full Text PDF

Store operated calcium (Ca) entry is an important homeostatic mechanism in cells, whereby the release of Ca from intracellular endoplasmic reticulum stores triggers the activation of a Ca influx pathway. Mediated by Orai1, this Ca influx has specific and essential roles in biological processes as diverse as lactation to immunity. Although pharmacological inhibitors of this Ca influx mechanism have helped to define the role of store operated Ca entry in many cellular events, the lack of isoform specific modulators and activators of Orai1 has limited our full understanding of these processes.

View Article and Find Full Text PDF

We have previously shown that high expression of the nucleic acid binding factor YB-1 is strongly associated with poor prognosis in a variety of cancer types. The 3-dimensional protein structure of YB-1 has yet to be determined and its role in transcriptional regulation remains elusive. Drug targeting of transcription factors is often thought to be difficult and there are very few published high-throughput screening approaches.

View Article and Find Full Text PDF

Gene-directed enzyme prodrug therapy (GDEPT) uses tumor-tropic vectors to deliver prodrug-converting enzymes such as nitroreductases specifically to the tumor environment. The nitroreductase NfsB from (NfsB_Ec) has been a particular focal point for GDEPT and over the past 25 years has been the subject of several engineering studies seeking to improve catalysis of prodrug substrates. To facilitate clinical development, there is also a need to enable effective non-invasive imaging capabilities.

View Article and Find Full Text PDF

Human growth hormone (GH) is a classical pituitary endocrine hormone that is essential for normal postnatal growth and has pleiotropic effects across multiple physiological systems. GH is also expressed in extrapituitary tissues and has localized autocrine/paracrine effects at these sites. In adults, hypersecretion of GH causes acromegaly, and strategies that block the release of GH or that inhibit GH receptor (GHR) activation are the primary forms of medical therapy for this disease.

View Article and Find Full Text PDF

Using a scaffold-hopping approach, imidazo[1,2-a]pyridine analogues of the ZSTK474 (benzimidazole) class of phosphatidylinositol 3-kinase (PI3K) inhibitors have been synthesized for biological evaluation. Compounds were prepared using a heteroaryl Heck reaction procedure, involving the palladium-catalysed coupling of 2-(difluoromethyl)imidazo[1,2-a]pyridines with chloro, iodo or trifluoromethanesulfonyloxy (trifloxy) substituted 1,3,5-triazines or pyrimidines, with the iodo intermediates being preferred in terms of higher yields and milder reaction conditions. The new compounds maintain the PI3K isoform selectivity of their benzimidazole analogues, but in general show less potency.

View Article and Find Full Text PDF

Phosphoinositide 3-kinase β (PI3Kβ) is regulated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and small GTPases such as Rac1 and Rab5. Our lab previously identified two residues (Gln and Ile) in the helical domain of the catalytic subunit (p110β) of PI3Kβ whose mutation disrupts binding to Rab5. To better define the Rab5-p110β interface, we performed alanine-scanning mutagenesis and analyzed Rab5 binding with an pulldown assay with GST-Rab5 Of the 35 p110β helical domain mutants assayed, 11 disrupted binding to Rab5 without affecting Rac1 binding, basal lipid kinase activity, or Gβγ-stimulated kinase activity.

View Article and Find Full Text PDF

Prediction and characterization of how transiently membrane-bound signaling proteins interact with the cell membrane is important for understanding and controlling cellular signal transduction networks. Existing computational methods rely on approximate descriptions of the components of the system or their interactions, and thus are unable to identify residue- or lipid-specific contributions. Our rotational interaction energy profiling method allows rapid evaluation of an electrostatically optimal orientation of a protein for membrane association, as well as the residues or lipid species responsible for its favorability.

View Article and Find Full Text PDF

The serum and glucocorticoid-regulated kinase (SGK) family has been implicated in the regulation of many cellular processes downstream of the PI3K pathway. It plays a crucial role in PI3K-mediated tumorigenesis, making it a potential therapeutic target for cancer. SGK family consists of three isoforms (SGK1, SGK2, and SGK3), which have high sequence homology in the kinase domain and similar substrate specificity with the AKT family.

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K) pathway is involved in many cellular functions including cell growth, metabolism, and transformation. Hyperactivation of this pathway contributes to tumorigenesis, therefore, PI3K is a major target for anticancer drug discovery. Since the PI3Kα isoform is implicated mostly in cancer, we conducted a high-throughput screening (HTS) campaign using a 3-step PI3K homogenous time-resolved fluorescence assay against this isoform bearing the H1047R mutation.

View Article and Find Full Text PDF

The proteins Orai1 and STIM1 control store-operated Ca entry (SOCE) into cells. SOCE is important for migration, invasion and metastasis of MDA-MB-231 human triple negative breast cancer (TNBC) cells and has been proposed as a target for cancer drug discovery. Two hit compounds from a medium throughput screen, displayed encouraging inhibition of SOCE in MDA-MB-231 cells, as measured by a Fluorescence Imaging Plate Reader (FLIPR) Ca assay.

View Article and Find Full Text PDF

Replacement of one of the morpholine groups of the phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 (1) with sulfonamide containing substituents produced a new class of active and potent PI3Kα inhibitors. Solubility issues prevented all but the 6-amino derivative 17 from being evaluated in vivo, but the clear activity of this compound demonstrated that this class of PI3K inhibitor shows great promise.

View Article and Find Full Text PDF

Phosphoinositide 3-kinases (PI3Ks) are major regulators of many cellular functions, and hyperactivation of PI3K cell signalling pathways is a major target for anticancer drug discovery. PI3Kα is the isoform most implicated in cancer, and our aim is to selectively inhibit this isoform, which may be more beneficial than concurrent inhibition of all Class I PI3Ks. We have used structure-guided design to merge high-selectivity and high-affinity characteristics found in existing compounds.

View Article and Find Full Text PDF

Background: Aldo-keto reductase 1C3 (AKR1C3) is an important oxidoreductase with multiple substrates, that are involved in producing extra-testicular androgens. Its activity is influenced by environmental exposures, as well as by genetic variants. These genetic variants could therefore produce variable testosterone levels and subsequent androgen receptor (AR) activation.

View Article and Find Full Text PDF

GluN1 is a mandatory component of N-methyl-D-aspartate receptors (NMDARs) best known for their roles in the brain, but with increasing evidence for relevance in peripheral tissues, including platelets. Certain anti-GluN1 antibodies reduce brain infarcts in rodent models of ischaemic stroke. There is also evidence that human anti-GluN1 autoantibodies reduce neuronal damage in stroke patients, but the underlying mechanism is unclear.

View Article and Find Full Text PDF

Gene-directed enzyme-prodrug therapy (GDEPT) is a promising anti-cancer strategy. However, inadequate prodrugs, inefficient prodrug activation, and a lack of non-invasive imaging capabilities have hindered clinical progression. To address these issues, we used a high-throughput Escherichia coli platform to evolve the multifunctional nitroreductase E.

View Article and Find Full Text PDF

High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM.

View Article and Find Full Text PDF