Nanomaterials (Basel)
January 2024
The optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths.
View Article and Find Full Text PDFVersatile silk protein-based material formats were studied to demonstrate bioresorbable, implantable optical oxygen sensors that can integrate with the surrounding tissues. The ability to continuously monitor tissue oxygenation in vivo is desired for a range of medical applications. Silk was chosen as the matrix material due to its excellent biocompatibility, its unique chemistry that facilitates interactions with chromophores, and the potential to tune degradation time without altering chemical composition.
View Article and Find Full Text PDFThe use of visible light to drive polymerizations with spatiotemporal control offers a mild alternative to contemporary UV-light-based production of soft materials. In this spectral region, photoredox catalysis represents the most efficient polymerization method, yet it relies on the use of heavy-atoms, such as precious metals or toxic halogens. Herein, spin-orbit charge transfer intersystem crossing from boron dipyrromethene (BODIPY) dyads bearing twisted aromatic groups is shown to enable efficient visible light polymerizations in the absence of heavy-atoms.
View Article and Find Full Text PDFFour core and six distyryl-extended methylated-meso-phenyl-BODIPY dyes with varying iodine content were synthesized. The influence of iodine loading and substitution position on the photophysical properties of these chromophores was evaluated. Selective iodine insertion at the 2- and 6-positions of the methylated-meso-phenyl-BODIPY core, rather than maximum iodine content, resulted in the highest intersystem crossing efficiency.
View Article and Find Full Text PDFAn all-acceptor napthalenediimide-bithiazole-based co-polymer, P(NDI2OD-BiTz), was synthesized and characterized for application in thin-film transistors. Density functional theory calculations point to an optimal perpendicular dihedral angle of 90° between acceptor units along isolated polymer chains; yet optimized transistors yield electron mobility of 0.11 cm/(V s) with the use of a zwitterionic naphthalene diimide interlayer.
View Article and Find Full Text PDF