We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference.
View Article and Find Full Text PDFThe pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a rapid response by the scientific community to further understand and combat its associated pathologic etiology. A focal point has been on the immune responses mounted during the acute and post-acute phases of infection, but the immediate post-diagnosis phase remains relatively understudied. We sought to better understand the immediate post-diagnosis phase by collecting blood from study participants soon after a positive test and identifying molecular associations with longitudinal disease outcomes.
View Article and Find Full Text PDFRegulatory T cells (T) normally maintain self-tolerance. T recognize "self" such that when they are not working properly, such as in autoimmunity, the immune system can attack and destroy one's own tissues. Current therapies for autoimmunity rely on relatively ineffective and too often toxic therapies to "treat" the destructive inflammation.
View Article and Find Full Text PDFThe immunostimulatory cytokine interleukin-2 (IL-2) is a growth factor for a wide range of leukocytes, including T cells and natural killer (NK) cells. Considerable effort has been invested in using IL-2 as a therapeutic agent for a variety of immune disorders ranging from AIDS to cancer. However, adverse effects have limited its use in the clinic.
View Article and Find Full Text PDFAdoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs).
View Article and Find Full Text PDFThe signaling pathways utilized by naïve and experienced effector CD4 T cells during activation and proliferation were evaluated. While inhibition of either mTOR or MAPK alone was able to inhibit naïve T cell proliferation, both mTOR and MAPK (ERK) pathway inhibition was required to efficiently block experienced, effector CD4 T cell proliferation. This was demonstrated both in vitro, and in vivo by treating mice with collagen-induced arthritis using mTOR and/or ERK inhibitors.
View Article and Find Full Text PDFGRAIL (gene related to anergy in lymphocytes, also known as RNF128), an ubiquitin-protein ligase (E3), utilizes a unique single transmembrane protein with a split-function motif, and is an important gatekeeper of T-cell unresponsiveness. Although it may play a role in other CD4 T-cell functions including activation, survival and differentiation, GRAIL is most well characterized as a negative regulator of T-cell receptor responsiveness and cytokine production. Here, we review the recent literature on this remarkable E3 in the regulation of human and mouse CD4 T-cell unresponsiveness.
View Article and Find Full Text PDFDespite the success of passive immunotherapy with monoclonal antibodies (mAbs), many lymphoma patients eventually relapse. Induction of an adaptive immune response may elicit active and long-lasting antitumor immunity, thereby preventing or delaying recurrence. Immunomodulating mAbs directed against immune cell targets can be used to enhance the immune response to achieve efficient antitumor immunity.
View Article and Find Full Text PDFUbiquitination of eukaryotic proteins regulates a broad range of cellular processes, including T cell activation and tolerance. We have previously demonstrated that GRAIL (gene related to anergy in lymphocytes), a transmembrane RING finger ubiquitin E3 ligase, initially described as induced during the induction of CD4 T cell anergy, is also expressed in resting CD4 T cells. In this study, we show that GRAIL can down-modulate the expression of CD83 (previously described as a cell surface marker for mature dendritic cells) on CD4 T cells.
View Article and Find Full Text PDFIn this study, we demonstrate that the E3 ubiquitin ligase gene related to anergy in lymphocytes (GRAIL) is expressed in quiescent naive mouse and human CD4 T cells and has a functional role in inhibiting naive T cell proliferation. Following TCR engagement, CD28 costimulation results in the expression of IL-2 whose signaling through its receptor activates the Akt-mammalian target of rapamycin (mTOR) pathway. Activation of mTOR allows selective mRNA translation, including the epistatic regulator of GRAIL, Otubain-1 (Otub1), whose expression results in the degradation of GRAIL and allows T cell proliferation.
View Article and Find Full Text PDFActivation of naive T lymphocytes is regulated through a series of discrete checkpoints that maintain unresponsiveness to self. During this multistep process, costimulatory interactions act as inducible signals that allow APCs to selectively mobilize T cells against foreign Ags. In this study, we provide evidence that the anergy-associated E3 ubiquitin ligase GRAIL (gene related to anergy in lymphocytes) regulates expression of the costimulatory molecule CD40L on CD4 T cells.
View Article and Find Full Text PDFTGF-beta1 plays a critical role in restraining pathogenic Th1 autoimmune responses in vivo, but the mechanisms that mediate TGF-beta1's suppressive effects on CD4(+) T cell expression of IFN-gamma expression remain incompletely understood. To evaluate mechanisms by which TGF-beta1 inhibits IFN-gamma expression in CD4(+) T cells, we primed naive wild-type murine BALB/c CD4(+) T cells in vitro under Th1 development conditions in the presence or the absence of added TGF-beta1. We found that the presence of TGF-beta1 during priming of CD4(+) T cells suppressed both IFN-gamma expression during priming as well as the development of Th1 effector cells expressing IFN-gamma at a recall stimulation.
View Article and Find Full Text PDFAutoimmune hepatitis (AIH) is mediated by a T-cell attack upon liver parenchyma. Susceptibility to the development of AIH is genetically determined. While particular MHC haplotypes are known risk factors, it has been widely speculated that autoimmune liver damage can be regulated by additional genetic loci unlinked to MHC.
View Article and Find Full Text PDFCyclophosphamide (CPA) and ifosfamide (IFA) are oxazaphosphorine anticancer prodrugs metabolized by two alternative cytochrome P450 (P450) pathways, drug activation by 4-hydroxylation and drug inactivation by N-dechloroethylation, which generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde. CPA and IFA metabolism catalyzed by P450s 2B1, 2B4, 2B5, and seven site-specific 2B1 mutants was studied in a reconstituted Escherichia coli expression system to identify residues that contribute to the unique activities and substrate specificities of these enzymes. The catalytic efficiency of CPA 4-hydroxylation by rat P450 2B1 was 10- to 35-fold higher than that of rabbit P450 2B4 or 2B5.
View Article and Find Full Text PDFThe etiology of autoimmune liver disease is poorly understood. BALB/c mice deficient in the immunoregulatory cytokine TGF-beta1 spontaneously develop necroinflammatory liver disease, but the immune basis for the development of this pathology has not been demonstrated. Here, we show that BALB/c-TGF-beta1(-/-) mice exhibit abnormal expansion in hepatic mononuclear cells (MNCs) compared with wild-type littermate control mice, particularly in the T cell and macrophage lineages.
View Article and Find Full Text PDFTransforming growth factor-beta1 (TGF-beta1) is a critical regulator of T cell responses in vivo. In vitro, TGF-beta1 can either enhance or inhibit T cell proliferative responses, but the relevant factors that determine the T cell response to TGF-beta1 remain obscure. Here, we present evidence that CD28 co-stimulation modifies the effects of TGF-beta1 on T cell proliferation.
View Article and Find Full Text PDFDendritic cells (DCs) can be matured by CD40 stimulation to upregulate their MHC class II/peptide complexes and costimulatory molecule surface expression to become adept at presenting antigen to and activating naive T lymphocytes. The use of anti-CD40 antibodies as adjuvants for DC-based therapy has been advanced. Little is known as to how DC biology in response to CD40 ligation differs between in vitro versus in vivo ligation.
View Article and Find Full Text PDF