Methods Mol Biol
November 2019
Protein disulphide isomerase (PDI) is secreted by activated platelets and endothelial cells and is required for thrombus formation upon vascular injury. PDI catalyzes the reduction, oxidation, or isomerization of disulphide bonds in its substrate proteins. The specific substrates of PDI during thrombus formation have largely remained elusive, in part due to the transient nature of the PDI-substrate interaction.
View Article and Find Full Text PDFBackground: Protein disulfide isomerase (PDI) is a thiol isomerase secreted by vascular cells that is required for thrombus formation. Quercetin flavonoids inhibit PDI activity and block platelet accumulation and fibrin generation at the site of a vascular injury in mouse models, but the clinical effect of targeting extracellular PDI in humans has not been studied.
Methods: We conducted a multicenter phase II trial of sequential dosing cohorts to evaluate the efficacy of targeting PDI with isoquercetin to reduce hypercoagulability in cancer patients at high risk for thrombosis.
The mechanisms underlying the hypercoagulability of cancer are complex and include the upregulation coagulation factors or procoagulant proteins, shedding of microparticles, and direct activation of vascular cells. Protein disulfide isomerase (PDI) is a thiol isomerase secreted from activated platelets and endothelial cells and plays a critical role in both platelet aggregation and fibrin generation. A number of potential intravascular targets of PDI have been identified including cell surface receptors (e.
View Article and Find Full Text PDFThiol isomerases such as protein-disulfide isomerase (PDI) direct disulfide rearrangements required for proper folding of nascent proteins synthesized in the endoplasmic reticulum. Identifying PDI substrates is challenging because PDI catalyzes conformational changes that cannot be easily monitored ( compared with proteolytic cleavage or amino acid phosphorylation); PDI has multiple substrates; and it can catalyze either oxidation, reduction, or isomerization of substrates. Kinetic-based substrate trapping wherein the active site motif CGHC is modified to CGHA to stabilize a PDI-substrate intermediate is effective in identifying some substrates.
View Article and Find Full Text PDF: Protein disulfide isomerase (PDI) is required for thrombus formation. We previously demonstrated that glycosylated quercetin flavonoids such as isoquercetin inhibit PDI activity and thrombus formation in animal models, but whether extracellular PDI represents a viable anticoagulant target in humans and how its inhibition affects blood coagulation remain unknown. : We evaluated effects of oral administration of isoquercetin on platelet-dependent thrombin generation in healthy subjects and patients with persistently elevated anti-phospholipid antibodies.
View Article and Find Full Text PDFQuercetin-3-rutinoside inhibits thrombus formation in a mouse model by inhibiting extracellular protein disulfide isomerase (PDI), an enzyme required for platelet thrombus formation and fibrin generation. Prior studies have identified PDI as a potential target for novel antithrombotic agents. Using a fluorescence enhancement-based assay and isothermal calorimetry, we show that quercetin-3-rutinoside directly binds to the b' domain of PDI with a 1:1 stoichiometry.
View Article and Find Full Text PDFProtein disulfide isomerase (PDI) and endoplasmic reticulum protein 57 (ERp57) are emerging as important regulators of thrombus formation. Another thiol isomerase, endoplasmic reticulum protein 5 (ERp5), is involved in platelet activation. We show here the involvement of ERp5 in thrombus formation using the mouse laser-injury model of thrombosis and a specific antibody raised against recombinant ERp5.
View Article and Find Full Text PDFHereditary fructose intolerance (HFI) is a disease of carbohydrate metabolism that can result in hyperuricemia, hypoglycemia, liver and kidney failure, coma, and death. Currently, the only treatment for HFI is a strict fructose-free diet. HFI arises from aldolase B deficiency, and the most predominant HFI mutation is an alanine to proline substitution at position 149 (A149P).
View Article and Find Full Text PDFConformational flexibility is emerging as a central theme in enzyme catalysis. Thus, identifying and characterizing enzyme dynamics are critical for understanding catalytic mechanisms. Herein, coupling analysis, which uses thermodynamic analysis to assess cooperativity and coupling between distal regions on an enzyme, is used to interrogate substrate specificity among fructose-1,6-(bis)phosphate aldolase (aldolase) isozymes.
View Article and Find Full Text PDF