Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a form of motor neuron disease (MND) that is characterized by the progressive loss of motor neurons within the spinal cord, brainstem, and motor cortex. Although ALS clinically manifests as a heterogeneous disease, with varying disease onset and survival, a unifying feature is the presence of ubiquitinated cytoplasmic protein inclusion aggregates containing TDP-43. However, the precise mechanisms linking protein inclusions and aggregation to neuronal loss are currently poorly understood.
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2020
Mutations in fused-in-sarcoma (FUS) and TAR DNA binding protein-43 (TDP-43; TARDBP) are known to cause the severe adult-onset neurodegenerative disorder amyotrophic lateral sclerosis (ALS). Proteinopathy caused by cellular stresses such as endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial stress and proteasomal stress and the formation of stress granules (SGs), cytoplasmic aggregates and inclusions is a hallmark of ALS. FUS and TDP-43, which are DNA/RNA binding proteins that regulate transcription, RNA homeostasis and protein translation are implicated in ALS proteinopathy.
View Article and Find Full Text PDFCurrently there is a lack in fundamental understanding of disease progression of most neurodegenerative diseases, and, therefore, treatments and preventative measures are limited. Consequently, there is a great need for adaptable, yet robust model systems to both investigate elementary disease mechanisms and discover effective therapeutics. We have generated a Tol2 Gateway-compatible toolbox to study neurodegenerative disorders in zebrafish, which includes promoters for astrocytes, microglia and motor neurons, multiple fluorophores, and compatibility for the introduction of genes of interest or disease-linked genes.
View Article and Find Full Text PDF