Valorization of underutilized biobased feedstocks like hetero-polysaccharides is critical for the development of the biorefinery concept. Towards this goal, highly uniform xylan micro/nanoparticles with a particle size ranging from 400 nm to 2.5 μm in diameter were synthesized by a facile self-assembly method in aqueous solutions.
View Article and Find Full Text PDFEnzyme-mediated hydrolysis of cellulose always starts with an initial rapid phase, which gradually slows down, sometimes resulting in incomplete cellulose hydrolysis even after prolonged incubation. Although mechanisms such as end-product inhibition are known to play a role, the predominant mechanism appears to be reduced cellulose accessibility to the enzymes. When using Simon's stain to quantify accessibility, the accessibility of mechanically disintegrated and phosphoric acid-swollen cellulose substrates decreased as hydrolysis proceeded.
View Article and Find Full Text PDFThe pre-adsorption of non-catalytic/blocking proteins onto the lignin component of pretreated biomass has been shown to significantly increase the effectiveness of subsequent enzyme-mediated hydrolysis of the cellulose by limiting non-productive enzyme adsorption. Layer-by-layer adsorption of non-catalytic proteins and enzymes onto lignin was monitored using Quartz Crystal Micro balancing combined with Dissipation monitoring (QCM-D) and conventional protein adsorption. These methods were used to assess the interaction between soft/hardwood lignins, cellulases and the three non-catalytic proteins BSA, lysozyme and ovalbumin.
View Article and Find Full Text PDFSulphite addition during steam pretreatment of softwoods under acidic, neutral and alkaline conditions was assessed to try to minimize lignin condensation. Although pretreatment under neutral/alkaline conditions resulted in effective lignin sulphonation, non-uniform size reduction was observed. In contrast, acidic sulphite steam treatment at 210 °C for 10 min resulted in homogenous particle size reduction and water-insoluble component that was 62% carbohydrate and 33% lignin.
View Article and Find Full Text PDFAlthough densified wood pellets are an attractive biomass feedstock for bioenergy and biofuels production, partly due to their ease of transport, their friability and hygroscopic nature (attraction of moisture) have proven problematic in terms of storage and handling. Pre-steaming the biomass was shown to reduce the need for size reduction, significantly increasing pellet durability by relocating the plant cell wall lignin to the fibre surface and consequently enhancing binding between particles. Although steam pretreatment has been shown to facilitate enzyme-mediated hydrolysis of biomass, by increasing cellulose accessibility, drying and pelletization partially impeded enzymatic hydrolysis.
View Article and Find Full Text PDFThe development of lignocellulosic biorefineries requires a first stage of pretreatment which enables the efficient valorization of all fractions present in this renewable material. In this sense, this review aims to show the main advantages of hydrothermal treatment as a first step of a biorefinery infrastructure using hardwood as raw material, as well as, main drawback to overcome. Hydrothermal treatment of hardwood highlights for its high selectivity for hemicelluloses solubilization as xylooligosaccharides (XOS).
View Article and Find Full Text PDFPrevious work has shown that sulfonation and oxidation of chemi-thermomechanical pulps (CTMPs) significantly enhanced enzyme accessibility to cellulose while recovering the majority of carbohydrates in the water-insoluble component. In the work reported here, modified (sulfonated and oxidized) CTMPs derived from hard-and-softwoods were used to produce a DL-mix of lactic acid via a chemo-catalytic approach using lanthanide triflate (Ln (OTf)) catalysts (Ln = La, Nd, Er, and Yb). It was apparent that sulfonation and oxidation of chemi-thermomechanical pulps (CTMPs) also enhanced Ln(OTf) catalyst accessibility to the carbohydrate components of the pulps, with the Er(OTf) catalysts resulting in significant lactic acid production.
View Article and Find Full Text PDFLignin is known to limit the enzyme-mediated hydrolysis of biomass by both restricting substrate swelling and binding to the enzymes. Pretreated mechanical pulp (MP) made from Aspen wood chips was incubated with either 16% sodium sulfite or 32% sodium percarbonate to incorporate similar amounts of sulfonic and carboxylic acid groups onto the lignin (60 mmol/kg substrate) present in the pulp without resulting in significant delignification. When Simon's stain was used to assess potential enzyme accessibility to the cellulose, it was apparent that both post-treatments enhanced accessibility and cellulose hydrolysis.
View Article and Find Full Text PDFIn this work, deep eutectic solvent (DES) was prepared by mixing choline chloride (ChCl) with lactic acid (LA), and effects of cellulase non-productive binding onto DES-extracted lignin from willow and corn stover on enzymatic hydrolysis of cellulose was investigated. The correlation between hydrolysis yield of cellulose and chemical features of lignin was evaluated, and a potential inhibitory mechanism was proposed. Condensation of lignin was observed during DES treatment, and these condensed aromatic structures had an increased tendency to adsorb enzymes through hydrophobic interactions.
View Article and Find Full Text PDFThe high viscosities/yield stresses of lignocellulose slurries makes their industrial processing a significant challenge. However, little is known regarding the degree to which liquefaction and its enzymatic requirements are specific to a substrate's physicochemical and rheological properties. In the work reported here, the substrate- and rheological regime-specificities of liquefaction of various substrates were assessed using real-time in-rheometer viscometry and offline oscillatory rheometry when hydrolyzed by combinations of cellobiohydrolase ( Cel7A), endoglucanase ( Cel45A), glycoside hydrolase (GH) family 10 xylanase, and GH family 11 xylanase.
View Article and Find Full Text PDFNanocellulose is a promising material but its isolation generally requires unrecyclable hazardous chemicals and high energy consumption and its overall yield is low due to the use of high purity cellulose as precursor. In order to overcome these shortcomings, in this study, thermomechanical pulp (TMP) was investigated as a precursor for isolating lignin containing nanocellulose (LNC) using an environmentally friendly acidic deep eutectic solvent (DES) pre-treatment. Flat "ribbon" like LNCs (around 7.
View Article and Find Full Text PDFThe influence of drying on cellulose accessibility and enzymatic hydrolysis was assessed. Dissolving pulp was differentially dried by freeze-, air- and oven-drying at 50 °C and subsequently hydrolyzed using the commercial CTec 3 cellulase preparation. It was apparent that drying reduced the ease of enzymatic hydrolysis of all of the substrates with a pronounced reduction (48%) exhibited by the oven-dried pulp.
View Article and Find Full Text PDFTo assess the impact of alkalinity on sulfonation and the enzyme-mediated hydrolysis of softwood cellulose, Lodgepole pine chips were impregnated with 8% sodium sulfite and increasing loadings of sodium carbonate before thermomechanical pulping. It was apparent that alkali addition enhanced lignin sulfonation with an additional 4% loading of sodium carbonate proving optimal. TEM indicated that sulfonation predominantly occurred within the secondary-cell-wall lignin, increasing cellulose accessibility to the cellulase enzymes.
View Article and Find Full Text PDFWe have recently presented a sequential treatment method, in which steam explosion (STEX) was followed by hydrotropic extraction (HEX), to selectively fractionate cellulose, hemicellulose, and lignin in hardwood into separate process streams. However, above a treatment severity threshold, the structural alterations in the cellulose-enriched fraction appeared to restrict the enzymatic hydrolyzability and delignification efficiency. To better understand the ultrastructural changes in the cellulose, hardwood chips were treated by single (STEX or HEX) and combined treatments (STEX and HEX), and the cellulose accessibility quantified with carbohydrate-binding modules (CBMs) that bind preferentially to crystalline (CBM2a) and paracrystalline cellulose (CBM17).
View Article and Find Full Text PDFThe generally high viscosity of micro/nanofibrillated cellulose limits its applications in cream and fluid products. A bleached softwood Kraft (BSK) pulp was refined with increasing energy (500-2500 kWh t) to produce micro/nanofibrillated cellulose (MNBSK). Subsequent xylanase treatment was shown to influence the viscosity, gel point, aspect ratio, and fiber surface morphology of the MNBSK.
View Article and Find Full Text PDFThe complex and heterogeneous polyphenolic structure of lignin confers recalcitrance to plant cell walls and challenges biomass processing for agroindustrial applications. Recently, significant efforts have been made to alter lignin composition to overcome its inherent intractability. In this work, to overcome technical difficulties related to biomass recalcitrance, we report an integrated strategy combining biomass genetic engineering with a pretreatment using a bio-derived deep eutectic solvent (DES).
View Article and Find Full Text PDFBackground: The hydrotreatment of oleochemical/lipid feedstocks is currently the only technology that provides significant volumes (millions of litres per year) of "conventional" biojet/sustainable aviation fuels (SAF). However, if biojet fuels are to be produced in sustainably sourced volumes (billions of litres per year) at a price comparable with fossil jet fuel, biomass-derived "advanced" biojet fuels will be needed. Three direct thermochemical liquefaction technologies, fast pyrolysis, catalytic fast pyrolysis and hydrothermal liquefaction were assessed for their potential to produce "biocrudes" which were subsequently upgraded to drop-in biofuels by either dedicated hydrotreatment or co-processed hydrotreatment.
View Article and Find Full Text PDFTwo fluorescence-tagged carbohydrate-binding modules (CBMs), which specifically bind to crystalline (CBM2a-RRedX) and paracrystalline (CBM17-FITC) cellulose, were used to differentiate the supramolecular cellulose structures in bleached softwood Kraft fibers during enzyme-mediated hydrolysis. Differences in CBM adsorption were elucidated using confocal laser scanning microscopy (CLSM), and the structural changes occurring during enzyme-mediated deconstruction were quantified via the relative fluorescence intensities of the respective probes. It was apparent that a high degree of order (i.
View Article and Find Full Text PDFOne of the predominant mechanisms by which lignin restricts effective enzymatic deconstruction of lignocellulosic materials is the unproductive adsorption of enzymes. Although this inhibition can be partially mitigated through hydrophilization of lignin during thermochemical pretreatment, these types of treatments could potentially worsen slurry rheology, consequently making it more difficult to process the material at high substrate concentrations. In the work reported here, laccases were used to specifically modify lignin hydrophilicity within steam-pretreated substrate via in situ phenolic compound grafting.
View Article and Find Full Text PDFFunctionalized cellulose nanocrystals (CNC) have unique properties that make them attractive in various applications such as drug delivery, hydrogels, and emulsions. However, the predominant chemical methods currently used to functionalize cellulose nanocrystals have a large environmental footprint. Although greener methods are desirable, the relatively inert nature of cellulose crystals presents a major challenge to their potential modification in aqueous media.
View Article and Find Full Text PDFAlthough bacterial cellulose (BC) is a fascinating, highly pure cellulose material for various downstream applications, production has been challenged by its low productivity. This work reported a facile route to significantly enhance BC yield without compromising its structural advantages via adding mesoporous halloysite nanotubes (HNTs) in the culture medium at static cultivations. The BC productivity of Gluconacetobacter xylinus was increased from 2.
View Article and Find Full Text PDFIn this study, the influence of major hemicellulosic sugars (mannose and xylose) on cellulose hydrolysis and major enzyme activities were evaluated by using both commercial enzyme cocktail and purified cellulase monocomponents over a "library" of cellulosic substrates. Surprisingly, the results showed that unlike glucose, mannose/xylose did not inhibit individual cellulase activities but significantly decreased their hydrolytic performance on cellulose substrates. When various enzyme-substrate interactions (e.
View Article and Find Full Text PDFThe aim of this work was to study how to minimize cellulase inhibition of whole slurry biomass hydrolysis through addition of carbocation scavengers during acid-catalyzed pretreatment. Various potential carbocation scavengers were compared and their inhibition mitigating effects towards the hydrolytic performance of cellulase enzymes was assessed. The results indicated that the addition of carbocation scavengers during the pretreatment process could not only alleviate the inhibitory effect of the phenolics on the enzymatic hydrolysis but also increase the accessibility of cellulases to the pretreated substrates.
View Article and Find Full Text PDFOne of the challenges in biorefinery is the still too much enzyme involved in the saccharification of the cellulosic component. High-temperature hydrolysis with thermostable enzyme showed promise. In this study, a temperature-elevated two-stage hydrolysis, including xylan "coat" removal at high-temperature by thermostable xylanase (Xyn10A) from Thermotoga thermarum DSM 5069 followed with saccharification step by commercial cellulase, was introduced to improve biomass deconstruction.
View Article and Find Full Text PDF