Publications by authors named "Jack S Richards"

Since its emergence in 2019, SARS-CoV-2 has spread and evolved globally, with newly emerged variants of concern (VOCs) accounting for more than 500 million COVID-19 cases and 6 million deaths. Continuous surveillance utilizing simple genetic tools is needed to measure the viral epidemiological diversity, risk of infection, and distribution among different demographics in different geographical regions. To help address this need, we developed a proof-of-concept multilocus genotyping tool and demonstrated its utility to monitor viral populations sampled in 2020 and 2021 across six continents.

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in an unprecedented global demand for in vitro diagnostic reagents. Supply shortages and hoarding have impacted testing capacity which has led to inefficient COVID-19 case identification and transmission control, predominantly in developing countries. Traditionally, RNA extraction is a prerequisite for conducting SARS-CoV-2 nucleic acid amplification tests (NAAT); however, simplified methods of sample processing have been successful at bypassing typical nucleic acid extraction steps, enabling extraction-free SARS-CoV-2 NAAT workflows.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a recently emerged and highly contagious virus that causes coronavirus disease 2019 (COVID-19). As of August 24, 2021, there were more than 212 million confirmed COVID-19 cases and nearly 4.4 million deaths reported globally.

View Article and Find Full Text PDF

Merozoite surface protein 2 (MSP2) is a highly abundant, GPI-anchored surface antigen on merozoites of the malaria parasite Plasmodium falciparum. It consists of highly conserved N- and C-terminal domains, and a central polymorphic region that allows all MSP2 alleles to be categorized into the 3D7 or FC27 family. Previously it has been shown that epitope accessibility differs between lipid-bound and lipid-free MSP2, suggesting that lipid interactions modulate the conformation and antigenicity in a way that may better mimic native MSP2 on the merozoite surface.

View Article and Find Full Text PDF

Our understanding of SARS-CoV-2, the virus responsible for coronavirus disease 2019 (COVID-19), its clinical manifestations, and treatment options continues to evolve at an unparalleled pace. This review sought to summarize the key literature regarding transmission, case definitions, clinical management, and the burden of COVID-19. Our review of the literature showed that SARS-CoV-2 was mainly transmitted via inhalation of respiratory droplets containing the virus and had a mean incubation period of 4-6 days.

View Article and Find Full Text PDF

The development of effective malaria vaccines remains a global health priority. Currently, the most advanced vaccine, known as RTS,S, has only shown modest efficacy in clinical trials. Thus, the development of more efficacious vaccines by improving the formulation of RTS,S for increased efficacy or to interrupt malaria transmission are urgently needed.

View Article and Find Full Text PDF

Background: Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates.

View Article and Find Full Text PDF

Background: A key issue in achieving and sustaining malaria elimination is the need to prevent local transmission arising from imported cases of malaria. The likelihood of this occurring depends on a range of local factors, and these can be used to allocate resources to contain transmission. Therefore, a risk assessment and management strategy is required to identify risk indexes for malaria transmission when imported cases occur.

View Article and Find Full Text PDF

Antibodies against P. falciparum merozoites fix complement to inhibit blood-stage replication in naturally-acquired and vaccine-induced immunity; however, specific targets of these functional antibodies and their importance in protective immunity are unknown. Among malaria-exposed individuals, we show that complement-fixing antibodies to merozoites are more strongly correlated with protective immunity than antibodies that inhibit growth quantified using the current reference assay for merozoite vaccine evaluation.

View Article and Find Full Text PDF

We demonstrate a method of quantification and detection of parasites in aqueous red blood cells (RBCs) by using a simple benchtop Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectrometer in conjunction with Multivariate Data Analysis (MVDA). 3D7 P. falciparum were cultured to 10% parasitemia ring stage parasites and used to spike fresh donor isolated RBCs to create a dilution series between 0-1%.

View Article and Find Full Text PDF

Background: Much of the extensive research regarding transmission of malaria is underpinned by mathematical modelling. Compartmental models, which focus on interactions and transitions between population strata, have been a mainstay of such modelling for more than a century. However, modellers are increasingly adopting agent-based approaches, which model hosts, vectors and/or their interactions on an individual level.

View Article and Find Full Text PDF

Summary: A sliding window analysis over a protein or genomic sequence is commonly performed, and we present a Python tool, BioStructMap, that extends this concept to three-dimensional (3D) space, allowing the application of a 3D sliding window analysis over a protein structure. BioStructMap is easily extensible, allowing the user to apply custom functions to spatially aggregated data. BioStructMap also allows mapping of underlying genomic sequences to protein structures, allowing the user to perform genetic-based analysis over spatially linked codons-this has applications when selection pressures arise at the level of protein structure.

View Article and Find Full Text PDF

Background: Plasmodium vivax is a significant contributor to the global malaria burden, and a vaccine targeting vivax malaria is urgently needed. An understanding of the targets of functional immune responses during the course of natural infection will aid in the development of a vaccine. Antibodies play a key role in this process, with responses against particular epitopes leading to immune selection pressure on these epitopes.

View Article and Find Full Text PDF

New technologies to diagnose malaria at high sensitivity and specificity are urgently needed in the developing world where the disease continues to pose a huge burden on society. Infrared and Raman spectroscopy-based diagnostic methods have a number of advantages compared with other diagnostic tests currently on the market. These include high sensitivity and specificity for detecting low levels of parasitemia along with ease of use and portability.

View Article and Find Full Text PDF

Background: Overcoming antigenic diversity is a key challenge in the development of effective Plasmodium falciparum malaria vaccines. Strategies that promote the generation of antibodies targeting conserved epitopes of vaccine antigens may provide protection against diverse parasites strains. Understanding differences between vaccine-induced and naturally acquired immunity is important to achieving this goal.

View Article and Find Full Text PDF

Humoral immune responses against the malaria parasite are an important component of a protective immune response. Antibodies are often directed towards conformational epitopes, and the native structure of the antigenic region is usually critical for antibody recognition. We examined the structural features of various Plasmodium antigens that may impact on epitope location, by performing a comprehensive analysis of known and modelled structures from P.

View Article and Find Full Text PDF

In response to the widespread emergence of antibiotic-resistant microbes, new therapeutic agents are required for many human pathogens. A non-mammalian polysaccharide, poly--acetyl-d-glucosamine (PNAG), is produced by bacteria, fungi, and protozoan parasites. Antibodies that bind to PNAG and its deacetylated form (dPNAG) exhibit promising and activities against many microbes.

View Article and Find Full Text PDF

There is a critical need for better biosensors for the detection and diagnosis of malaria. We previously developed a DNA aptamer that recognises the Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme with high sensitivity and specificity. The aptamer was integrated into an Aptamer-Tethered Enzyme Capture (APTEC) assay as a laboratory-based diagnostic approach.

View Article and Find Full Text PDF

Background: Multi-drug-resistant Plasmodium falciparum threatens malaria elimination efforts in Cambodia and the Greater Mekong Subregion (GMS). Malaria burden in the GMS is higher among certain high-risk demographic groups in Cambodia, especially among migrant and mobile populations (MMPs). This respondent driven sampling (RDS) study was conducted in order to determine malaria knowledge, treatment-seeking behaviours and preventive practices among two MMP groups in Western Cambodia.

View Article and Find Full Text PDF

Background: In a drug-resistant, malaria elimination setting like Western Cambodia, field research is essential for the development of novel anti-malarial regimens and the public health solutions necessary to monitor the spread of resistance and eliminate infection. Such field studies often face a variety of similar implementation challenges, but these are rarely captured in a systematic way or used to optimize future study designs that might overcome similar challenges. Field-based research staff often have extensive experience and can provide valuable insight regarding these issues, but their perspectives and experiences are rarely documented and seldom integrated into future research protocols.

View Article and Find Full Text PDF

Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk of severe haemolysis following the administration of 8-aminoquinoline compounds. Primaquine is the only widely available 8-aminoquinoline for the radical cure of Plasmodium vivax. Tafenoquine is under development with the potential to simplify treatment regimens, but point-of-care (PoC) tests will be needed to provide quantitative measurement of G6PD activity prior to its administration.

View Article and Find Full Text PDF

New diagnostic tools that can detect malaria parasites in conjunction with other diagnostic parameters are urgently required. In this study, Attenuated Total Reflection Fourier transform infrared (ATR-FTIR) spectroscopy in combination with Partial Least Square Discriminant Analysis (PLS-DA) and Partial Least Square Regression (PLS-R) have been applied as a point-of-care test for identifying malaria parasites, blood glucose, and urea levels in whole blood samples from thick blood films on glass slides. The specificity for the PLS-DA was found to be 98% for parasitemia levels >0.

View Article and Find Full Text PDF

The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes.

View Article and Find Full Text PDF

Merozoite surface protein 2 (MSP2) is an intrinsically disordered antigen that is abundant on the surface of the malaria parasite Plasmodium falciparum. The two allelic families of MSP2, 3D7 and FC27, differ in their central variable regions, which are flanked by highly conserved C-terminal and N-terminal regions. In a vaccine trial, full-length 3D7 MSP2 induced a strain-specific protective immune response despite the detectable presence of conserved region antibodies.

View Article and Find Full Text PDF