Publications by authors named "Jack Rubien"

Live-cell transcriptomic recording can help reveal hidden cellular states that precede phenotypic transformation. Here we demonstrate the use of protein-based encapsulation for preserving samples of cytoplasmic RNAs inside living cells. These molecular time capsules (MTCs) can be induced to create time-stamped transcriptome snapshots, preserve RNAs after cellular transitions, and enable retrospective investigations of gene expression programs that drive distinct developmental trajectories.

View Article and Find Full Text PDF
Article Synopsis
  • * Short RNAs (24-48 nucleotides) can prevent FUS from forming pathological aggregates and even reverse its harmful condensation by interacting with different RNA-binding domains.
  • * A specific short RNA effectively breaks down harmful aggregates of FUS and TDP-43, restoring their normal function in neurons, suggesting potential for RNA-based therapies for ALS and FTD.
View Article and Find Full Text PDF

Neuronal TDP-43-positive inclusions are neuropathological hallmark lesions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Pathogenic missense variants in TARDBP, the gene encoding TDP-43, can cause ALS and cluster in the C-terminal prion-like domain (PrLD), where they modulate the liquid condensation and aggregation properties of the protein. TDP-43-positive inclusions are also found in rimmed vacuole myopathies, including sporadic inclusion body myositis, but myopathy-causing TDP-43 variants have not been reported.

View Article and Find Full Text PDF

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown.

View Article and Find Full Text PDF

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation.

View Article and Find Full Text PDF

Polyelectrolyte complex micelles (PCMs, core-shell nanoparticles formed by complexation of a polyelectrolyte with a polyelectrolyte-hydrophilic neutral block copolymer) offer a solution to the critical problem of delivering therapeutic nucleic acids, Despite this, few systematic studies have been conducted on how parameters such as polycation charge density, hydrophobicity, and choice of charged group influence PCM properties, despite evidence that these strongly influence the complexation behavior of polyelectrolyte homopolymers. In this article, we report a comparison of oligonucleotide PCMs and polyelectrolyte complexes formed by poly(lysine) and poly((vinylbenzyl) trimethylammonium) (PVBTMA), a styrenic polycation with comparatively higher charge density, increased hydrophobicity, and a permanent positive charge. All of these differences have been individually suggested to provide increased complex stability, but we find that PVBTMA in fact complexes oligonucleotides more weakly than does poly(lysine), as measured by stability versus added salt.

View Article and Find Full Text PDF

The modular synthesis of a library containing seven self-assembling amphiphilic Janus dendrimers is reported. Three of these molecules contain environmentally friendly chiral-racemic fluorinated dendrons in their hydrophobic part (RF), one contains achiral hydrogenated dendrons (RH), while one denoted hybrid Janus dendrimer, contains a combination of chiral-racemic fluorinated and achiral hydrogenated dendrons (RHF) in its hydrophobic part. Two Janus dendrimers contain either chiral-racemic fluorinated dendrons and a green fluorescent dye conjugated to its hydrophilic part (RF-NBD) or achiral hydrogenated and a red fluorescent dye in its hydrophilic part (RH-RhB).

View Article and Find Full Text PDF