Publications by authors named "Jack R Lee"

Mutations in the human gene encoding connexin 26 (Cx26 or GJB2) cause either nonsyndromic deafness or syndromic deafness associated with skin diseases. That distinct clinical disorders can be caused by different mutations within the same gene suggests that different channel activities influence the ear and skin. Here we use three different expression systems to examine the functional characteristics of two Cx26 mutations causing either mild (Cx26-D50A) or lethal (Cx26-A88V) keratitis-ichthyosis-deafness (KID) syndrome.

View Article and Find Full Text PDF

Gap junctions allow the exchange of ions and small molecules between adjacent cells through intercellular channels formed by connexin proteins, which can also form functional hemichannels in nonjunctional membranes. Mutations in connexin genes cause a variety of human diseases. For example, mutations in GJB2, the gene encoding connexin-26 (Cx26), are not only a major cause of nonsyndromic deafness, but also cause syndromic deafness associated with skin disorders such as palmoplantar keratoderma, keratitis-ichthyosis deafness syndrome, Vohwinkel syndrome, hystrix-ichthyosis deafness syndrome and Bart-Pumphrey syndrome.

View Article and Find Full Text PDF

Mutations in the GJB2 gene-encoding connexin 26 (Cx26) have been linked to skin disorders and genetic deafness. However, the severity and type of the skin disorders caused by Cx26 mutations are heterogeneous. Here we explored the effect of Cx26 KID syndrome-associated mutations, G12R, S17F, and D50N on channel function.

View Article and Find Full Text PDF