Glycogen accumulation occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited because of the lack of a growth nutrient, e.g.
View Article and Find Full Text PDFThe enzyme AGPase [ADP-Glc (glucose) pyrophosphorylase] catalyses a rate-limiting step in starch synthesis in tomato (Solanum lycopersicon) fruit, which undergoes a transient period of starch accumulation. It has been a generally accepted paradigm in starch metabolism that the enzyme naturally functions primarily as a heterotetramer comprised of two large subunits (L) and two small subunits (S). The tomato genome harbours a single gene encoding S and three genes for L proteins, which are expressed in both a tissue- and time-specific manner.
View Article and Find Full Text PDFGlycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure.
View Article and Find Full Text PDFThe accumulation of glycogen occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited due to the lack of a growth nutrient, e.g.
View Article and Find Full Text PDFADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene.
View Article and Find Full Text PDFIn higher plants, ADP-glucose pyrophosphorylase (ADPGlc-PPase) is a heterotetrameric enzyme comprised of two small and two large subunits. Potato-Arabidopsis hybrid ADPGlc-PPases were generated and their regulatory properties analyzed. We show that ADPGlc-PPase subunits from two different species can interact, producing active enzymes with new regulatory properties.
View Article and Find Full Text PDFADP-Glc pyrophosphorylase (PPase), a key regulatory enzyme in the biosynthetic pathway of starch and bacterial glycogen, catalyzes the synthesis of ADP-Glc from Glc-1-P and ATP. A homology model of the three-dimensional structure of the Escherichia coli enzyme complexed with ADP-Glc has been generated to study the substrate-binding site in detail. A set of amino acids in the model has been identified to be in close proximity to the glucose moiety of the ADP-Glc ligand.
View Article and Find Full Text PDFArch Biochem Biophys
September 2006
Bacterial glycogen/starch synthases are retaining GT-B glycosyltransferases that transfer glucosyl units from ADP-Glc to the non-reducing end of glycogen or starch. We modeled the Escherichia coli glycogen synthase based on the coordinates of the inactive form of the Agrobacterium tumefaciens glycogen synthase and the active form of the maltodextrin phosphorylase, a retaining GT-B glycosyltransferase belonging to a different family. In this model, we identified a set of conserved residues surrounding the sugar nucleotide substrate, and we replaced them with different amino acids by means of site-directed mutagenesis.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the regulatory step in the pathway for synthesis of bacterial glycogen and starch in plants. ADP-Glc PPases from cyanobacteria (homotetramer) and from potato (Solanum tuberosum) tuber (heterotetramer) are activated by 3-phosphoglycerate and inhibited by inorganic orthophosphate. To study the function of two putative domains, chimeric enzymes were constructed.
View Article and Find Full Text PDFIn plants, the synthesis of starch occurs by utilizing ADP-glucose as the glucosyl donor for the elongation of alpha-1,4-glucosidic chains. In photosynthetic bacteria the synthesis of glycogen follows a similar pathway. The first committed step in these pathways is the synthesis of ADP-glucose in a reaction catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase).
View Article and Find Full Text PDFADP-glucose pyrophosphorylase catalyzes the first committed and rate-limiting step in starch biosynthesis in plants and glycogen biosynthesis in bacteria. It is the enzymatic site for regulation of storage polysaccharide accumulation in plants and bacteria, being allosterically activated or inhibited by metabolites of energy flux. We report the first atomic resolution structure of ADP-glucose pyrophosphorylase.
View Article and Find Full Text PDFIn the post-genomic era, functional prediction of genes is largely based on sequence similarity searches, but sometimes the homologues bear different roles because of evolutionary adaptations. For instance, the existence of enzyme and non-enzyme homologues poses a difficult case for function prediction and the extent of this phenomenon is just starting to be surveyed. Different evolutionary paths are theoretically possible for the loss or acquisition of enzyme function.
View Article and Find Full Text PDFComputational analysis of ADP-glucose pyrophosphorylases predicts a fold with two domains. Co-expression of two polypeptides comprising residues 1-323 and 328-431 from the Escherichia coli ADP-glucose pyrophosphorylase yielded an enzyme form as active as the wild type. The only difference from the wild type was a slightly modified affinity for allosteric effectors.
View Article and Find Full Text PDFBacterial glycogen synthases transfer a glucosyl unit, retaining the anomeric configuration, from ADP-glucose to the non-reducing end of glycogen. We modeled the Escherichia coli glycogen synthase based on three glycosyltransferases with a GT-B fold. Comparison between the model and the structure of the active site of crystallized retaining GT-B glycosyltransferases identified conserved residues with the same topology.
View Article and Find Full Text PDFThe cysteine-specific reagent 5,5'-dithiobis(2-nitrobenzoic acid) inactivates the Escherichia coli glycogen synthase (Holmes, E., and Preiss, J. (1982) Arch.
View Article and Find Full Text PDFAdenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the conversion of glucose 1-phosphate and adenosine 5'-triphosphate to ADP-glucose and pyrophosphate. We present a radioactive assay of this enzyme with a higher signal/noise ratio. After stopping the reaction that uses [14C]glucose 1-phosphate as a substrate, the ADP-[14C]glucose formed as a product is converted to [14C]glycogen by the addition of glycogen synthase and nonradioactive glycogen as primer.
View Article and Find Full Text PDFTruncation of 112 amino acids at the N-terminus (Nd(1-112)) changes the chain transfer pattern of the Escherichia coli glycogen branching enzyme (GBE) [Arch. Biochem. Biophys.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
June 2003
The accumulation of alpha-1,4-polyglucans is an important strategy to cope with transient starvation conditions in the environment. In bacteria and plants, the synthesis of glycogen and starch occurs by utilizing ADP-glucose as the glucosyl donor for elongation of the alpha-1,4-glucosidic chain. The main regulatory step takes place at the level of ADP-glucose synthesis, a reaction catalyzed by ADP-Glc pyrophosphorylase (PPase).
View Article and Find Full Text PDFADP-glucose pyrophosphorylase catalyzes the first and limiting step in starch biosynthesis and is allosterically regulated by the levels of 3-phosphoglycerate and phosphate in plants. ADP-glucose pyrophosphorylases from plants are heterotetramers composed of two types of subunits (small and large). In this study, the six Arabidopsis thaliana genes coding for ADP-glucose pyrophosphorylase isoforms (two small and four large subunits) have been cloned and expressed in an Escherichia coli mutant deficient in ADP-glucose pyrophosphorylase activity.
View Article and Find Full Text PDFAsp142 in the homotetrameric ADP-glucose pyrophosphorylase (ADP-Glc PPase) enzyme from Escherichia coli was demonstrated to be involved in catalysis of this enzyme [Frueauf, J.B., Ballicora, M.
View Article and Find Full Text PDFBranching enzyme catalyzes the formation of alpha-1,6 branch points in either glycogen or starch. We report the 2.3-A crystal structure of glycogen branching enzyme from Escherichia coli.
View Article and Find Full Text PDFADPglucose pyrophosphorylase catalyzes the regulatory step in the pathway for bacterial glycogen synthesis. The enzymes from different organisms exhibit distinctive regulatory properties related to the main carbon metabolic pathway. Escherichia coli ADPglucose pyrophosphorylase is mainly activated by fructose 1,6-bisphosphate (FBP), whereas the Agrobacterium tumefaciens enzyme is activated by fructose 6-phosphate (F6P) and pyruvate.
View Article and Find Full Text PDFPrevious alanine scanning mutagenesis of ADP-glucose pyrophosphorylase from Anabaena PCC 7120 indicated that Arg(294) plays a role in inhibition by orthophosphate [J. Sheng, J. Preiss, Biochemistry 36 (1997) 13077].
View Article and Find Full Text PDF