Publications by authors named "Jack Maung"

General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID.

View Article and Find Full Text PDF

The deubiquitinase USP7 regulates the levels of multiple proteins with roles in cancer progression and immune response. Thus, USP7 inhibition may decrease oncogene function, increase tumor suppressor function, and sensitize tumors to DNA-damaging agents. We have discovered a novel chemical series that potently and selectively inhibits USP7 in biochemical and cellular assays.

View Article and Find Full Text PDF

USP7 is a promising target for cancer therapy as its inhibition is expected to decrease function of oncogenes, increase tumor suppressor function, and enhance immune function. Using a structure-based drug design strategy, a new class of reversible USP7 inhibitors has been identified that is highly potent in biochemical and cellular assays and extremely selective for USP7 over other deubiquitinases. The succinimide was identified as a key potency-driving motif, forming two strong hydrogen bonds to the allosteric pocket of USP7.

View Article and Find Full Text PDF

A series of imidazo[1,2-a]pyridines which directly bind to HCV Non-Structural Protein 4B (NS4B) is described. This series demonstrates potent in vitro inhibition of HCV replication (EC50 < 10 nM), direct binding to purified NS4B protein (IC50 < 20 nM), and an HCV resistance pattern associated with NS4B (H94N/R, V105L/M, F98L) that are unique among reported HCV clinical assets, suggestive of the potential for additive or synergistic combination with other small molecule inhibitors of HCV replication.

View Article and Find Full Text PDF

Compound 1 (SNS-314) is a potent and selective Aurora kinase inhibitor that is currently in clinical trials in patients with advanced solid tumors. This communication describes the synthesis of prodrug derivatives of 1 with improved aqueous solubility profiles. In particular, phosphonooxymethyl-derived prodrug 2g has significantly enhanced solubility and is converted to the biologically active parent (1) following iv as well as po administration to rodents.

View Article and Find Full Text PDF

To identify the pharmacophore of a phosphoramidate peptidomimetic inhibitor of prostate-specific membrane antigen (PSMA), a small analog library was designed and screened for inhibitory potency against PSMA. The design of the lead inhibitor was based upon N-acyl derivatives of endogenous substrate folyl-gamma-Glu and incorporates a phosphoramidate group to interact with the PSMA catalytic zinc atoms. The scope of the analog library was designed to test the importance of various functional groups to the inhibitory potency of the lead phosphoramidate.

View Article and Find Full Text PDF

A series of alkyl and aryl phosphonyl, thiophosphonyl, and dithiophosphonyl derivatives of (S)- and (R)-glutamic acid were prepared and examined for inhibitory potency against glutamate carboxypeptidase (carboxypeptidase G). The acquisition of the phosphonamidodithioic acids and the individual phosphonamidothioic acid diastereomers was achieved through a common phosphonamidothiolate precursor, which also allowed for the chromatographic resolution of the chiral phosphorus center of the phosphonamidothioic acids. The most potent inhibitor of the series was the n-butylphosphonamidate derivative of the natural isomer of glutamic acid.

View Article and Find Full Text PDF

To explore for the existence of an auxiliary hydrophobic binding register remote from the active site of PSMA a series of phenylalkylphosphonamidate derivatives of glutamic acid were synthesized and evaluated for their inhibitory potencies against PSMA. Both the phenyl- and benzylphosphonamidates (1a and 1b) exhibited only modest inhibitory potency against. The phenethyl analog 1c was intermediate in inhibitory potency while inhibitors possessing a longer alkyl tether from the phenyl ring, resulted in markedly improved K(i) values.

View Article and Find Full Text PDF