While dozens of studies have attempted to estimate the Monod kinetic parameters of microbial reductive dechlorination, published values in the literature vary by 2-6 orders of magnitude. This lack of consensus can be attributed in part to limitations of both experimental design and parameter estimation techniques. To address these issues, Hamiltonian Monte Carlo was used to produce more than one million sets of realistic simulated microcosm data under a variety of experimental conditions.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) have been shown to inhibit biodegradation (i.e., organohalide respiration) of chlorinated ethenes.
View Article and Find Full Text PDFEnviron Sci Technol
October 2021
Microcosm experiments to assess microbial reductive dechlorination of chlorinated aliphatic hydrocarbons typically experience 5-50% mass loss due to frequent sampling events and diffusion through septa. A literature review, however, reveals that models fit to such experiments for kinetic constant estimation have generally failed to account for experimental mass loss. To investigate possible resultant bias in best-fit parameters, a series of numerical experiments was conducted in which Monod kinetic models with and without mass loss were fit to more than 1300 synthetic data sets, generated using published microcosm data.
View Article and Find Full Text PDFAlthough microbial reductive dechlorination (MRD) has proven to be an effective approach for in situ treatment of chlorinated ethenes, field implementation of this technology is complicated by many factors, including subsurface heterogeneity, electron donor availability, and distribution of microbial populations. This work presents a coupled experimental and mathematical modeling study designed to explore the influence of heterogeneity on MRD and to assess the suitability of microcosm-derived rate parameters for modeling complex heterogeneous systems. A Monod-based model is applied to simulate a bioremediation experiment conducted in a laboratory-scale aquifer cell packed with aquifer material from the Commerce Street Superfund site in Williston, VT.
View Article and Find Full Text PDF