Space agriculture, pivotal for sustainable extraterrestrial missions, requires plants that can adapt to altered gravitational conditions. This study delves into the adaptive responses to altered gravity of Wolffia globosa, an aquatic plant known for its rapid growth and high nutritional value. The research aimed to analyse the effect of simulated microgravity and hypergravity on relative growth rate (RGR), morphological characteristics, protein content, and the correlation between plant size and growth rate of Wolffia globosa.
View Article and Find Full Text PDFA fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study.
View Article and Find Full Text PDFProgress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses.
View Article and Find Full Text PDFUnderstanding the response of plants to varied gravitational conditions is vital for developing effective food production in space bioregenerative life support systems. This study examines the impact of altered gravity conditions on the growth and morphological responses of Wolffia globosa (commonly known as "water lentils" or "duckweed"), assessing its potential as a space crop. Although an experiment testing the effect of simulated microgravity on Wolffia globosa has been previously conducted, for the first time, we investigated the effect of multiple gravity levels on the growth and morphological traits of Wolffia globosa plants.
View Article and Find Full Text PDFIn the age of space exploration, the effect of hypergravity on human physiology is a relatively neglected topic. However, astronauts have several experiences of hypergravity during their missions. The main disturbance of altered gravity can be imputed to cell cytoskeleton alteration and physiologic homeostasis of the body.
View Article and Find Full Text PDFSpace experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry.
View Article and Find Full Text PDFGravity plays a crucial role in physiology. The lack of gravity, like in long duration spaceflight missions, cause pathologies in , the musculoskeletal system, cardiovascular deconditioning, immune system deprivation or brain abnormalities, to just mention a few. The application of artificial gravity through short-arm human centrifugation (SAHC) has been studied as a possible countermeasure to treat spaceflight deconditioning.
View Article and Find Full Text PDFIn several diseases, bone resorption by osteoclasts is dysregulated. Thus far, no simple technique for real-time measurement of resorption is available. Here, we introduce an impedimetric bioassay for real-time monitoring of resorption by making use of the electrical insulating properties of the resorbable substrate calcium phosphate.
View Article and Find Full Text PDFPharmaceuticals carried into space are subjected to different gravitational conditions. Hypergravity is encountered in the first stage, during spacecraft launching. The stability of medicines represents a critical element of space missions, especially long-duration ones.
View Article and Find Full Text PDFLong-duration space missions will need to rely on the use of plants in bio-regenerative life support systems (BLSSs) because these systems can produce fresh food and oxygen, reduce carbon dioxide levels, recycle metabolic waste, and purify water. In this scenario, the need for new experiments on the effects of altered gravity conditions on plant biological processes is increasing, and significant efforts should be devoted to new ideas aimed at increasing the scientific output and lowering the experimental costs. Here, we report the design of an easy-to-produce and inexpensive device conceived to analyze the effect of interaction between gravity and light on root tropisms.
View Article and Find Full Text PDFSimulated microgravity and partial gravity research on Earth is a necessary complement to space research in real microgravity due to limitations of access to spaceflight. However, the use of ground-based facilities for reduced gravity simulation is far from simple. Microgravity simulation usually results in the need to consider secondary effects that appear in the generation of altered gravity.
View Article and Find Full Text PDFGravity alterations elicit complex and mostly detrimental effects on biological systems. Among these, a prominent role is occupied by oxidative stress, with consequences for tissue homeostasis and development. Studies in altered gravity are relevant for both Earth and space biomedicine, but their implementation using whole organisms is often troublesome.
View Article and Find Full Text PDFThe oral administration of drugs remains a challenge due to rapid enzymatic degradation and minimal absorption in the gastrointestinal tract. Mechanical forces, namely hypergravity, can interfere with cellular integrity and drug absorption, and there is no study describing its influence in the intestinal permeability. In this work, it was studied the effect of hypergravity on intestinal Caco-2 cells and its influence in the intestinal permeability of different nanoformulations and molecules.
View Article and Find Full Text PDFCells sense and react on changes of the mechanical properties of their environment and, likewise, respond to external mechanical stress applied to them. However, whether the gravitational field as overall body force modulates cellular behavior is unclear. Different studies demonstrated that micro- and hypergravity influences the shape and elasticity of cells, initiate cytoskeleton reorganization, and influence cell motility.
View Article and Find Full Text PDFAlthough many examples of simulated and real microgravity demonstrating their profound effect on biological systems are described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative process in a "whole animal" context.
View Article and Find Full Text PDFIn the field of rare bone diseases in particular, a broad care team of specialists embedded in multidisciplinary clinical and research environment is essential to generate new therapeutic solutions and approaches to care. Collaboration among clinical and research departments within a University Medical Center is often difficult to establish, and may be hindered by competition and non-equivalent cooperation inherent in a hierarchical structure. Here we describe the "collaborative organizational model" of the Amsterdam Bone Center (ABC), which emerged from and benefited the rare bone disease team.
View Article and Find Full Text PDFExtraterrestrial environments influence the biochemistry of organisms through a variety of factors, including high levels of radiation and vacuum, temperature extremes and a lack of water and nutrients. A wide variety of terrestrial microorganisms, including those counted amongst the most ancient inhabitants of Earth, can cope with high levels of salinity, extreme temperatures, desiccation and high levels of radiation. Key among these are the haloarchaea, considered particularly relevant for astrobiological studies due to their ability to thrive in hypersaline environments.
View Article and Find Full Text PDFLife on Earth has evolved under the influence of gravity. This force has played an important role in shaping development and morphology from the molecular level to the whole organism. Although aquatic life experiences reduced gravity effects, land plants have evolved under a 1- environment.
View Article and Find Full Text PDFGravity-sensitive cellular responses are regularly observed in both specialized and nonspecialized cells. One potential mechanism for this sensitivity is a changing viscosity of the intracellular organelles. Here, we report a novel, to our knowledge, viscosity-sensitive molecular rotor based on mesosubstituted boron-dipyrrin used to investigate the response of viscosity of cellular membranes to hypergravity conditions created at the large diameter centrifuge at the European Space Agency Technology Centre.
View Article and Find Full Text PDF