Publications by authors named "Jack J N Liang"

Human lens membranes contain the highest cholesterol concentration of any known biological membranes, but it significantly decreases with age. Oxygenation of cholesterol generates numerous forms of oxysterols (bile acids). We previously showed that two forms of the bile acid components--ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA)--suppressed lens epithelial cell death and alleviated cataract formation in galactosemic rat lenses.

View Article and Find Full Text PDF

The human lens crystallin gene CRYGC T5P is associated with Coppock-like cataract and has a phenotype of a dust-like opacity of the fetal lens nucleus and deep cortical region. Previous in vitro mutation studies indicate that the protein has changed conformation, solubility, and stability, which may make it susceptible to aggregation, as seen in cataractous lens and cell culture expression. To investigate the mechanisms leading to these events, we studied protein-protein interactions using confocal fluorescence resonance energy transfer (FRET) microscopy.

View Article and Find Full Text PDF

Purpose: The R120G mutation of alphaB-crystallin is known to cause desmin-related myopathy, but the mechanisms underlying the formation of cataract are not clearly established. We hypothesize that alteration of protein-protein interaction between R120G alphaB-crystallin and lens intermediate filament proteins is one of the mechanisms of congenital cataract.

Methods: Protein-protein interactions were determined by confocal fluorescence resonance energy transfer (FRET) microscopy using green fluorescence protein (GFP) as the donor and red fluorescence protein (RFP) as the acceptor.

View Article and Find Full Text PDF

Human lens beta-crystallin contains four acidic (betaA1-->betaA4) and three basic (betaB1-->betaB3) subunits. They oligomerize in the lens, but it is uncertain which subunits are involved in the oligomerization. We used a two-hybrid system to detect protein-protein interactions systematically.

View Article and Find Full Text PDF

Purpose: To determine protein-protein interactions among lens crystallins in living cells.

Methods: Fluorescence resonance energy transfer (FRET) microscopy was used to visualize interactions in living cells directly. Two genes, one (alphaA-crystallin) fused with green fluorescence protein (GFP) and the other (each of the following genes: alphaB-, betaB2-, gammaC-crystallin, and R120G alphaB-crystallin mutant) fused with GFP variant red fluorescence protein (RED), were cotransfected into HeLa cells.

View Article and Find Full Text PDF

betaB2-crystallin, the major component of beta-crystallin, is a dimer at low concentrations but can form oligomers under physiological conditions. The interaction domains have been speculated to be the beta-sheets, each of which is formed by two or more beta-strands. betaB2-crystallin consists of 16 beta-strands, 8 in the N-terminal domain and 8 in the C-terminal domain.

View Article and Find Full Text PDF

Purpose: Missense mutations in crystallin genes have been identified in autosomal dominant congenital cataracts. A truncation in the CRYBB2 gene (Q155*) has been associated with cerulean cataract, however its effects on biophysical properties have not been reported. We sought to determine the changes in conformation and protein-protein interactions brought about by this mutation.

View Article and Find Full Text PDF

T5P gammaC-crystallin mutation is associated with Coppock-like cataract, one of the autosomal dominant congenital cataracts. It is not known why the abundant alpha-crystallin cannot prevent the mutation-related aggregation. Our previous studies indicate that the mutation changes conformation and reduces solubility and stability, but it is not known whether it is these events or the loss of interaction with other crystallins that causes the cataract.

View Article and Find Full Text PDF

Lens alpha-crystallin, alpha A- and alpha B-crystallin, and Hsp27 are members of the small heat shock protein family. Both alpha A- and alpha B-crystallin are expressed in the lens and serve as structural proteins and as chaperones, but alpha B-crystallin is also expressed in nonlenticular organs where Hsp27, rather than alpha A-crystallin, is expressed along with alpha B-crystallin. It is not known what additional function Hsp27 has besides as a heat shock protein, but it may serve, as alpha A-crystallin does in the lens, to stabilize alpha B-crystallin.

View Article and Find Full Text PDF

Purpose: A recent study demonstrated the presence of protein-protein interactions among lens crystallins in a mammalian cell two-hybrid system assay and speculated about the significance of these interactions for protein solubility and lens transparency. The current study extends those findings to the following crystallin genes involved in some congenital cataracts: CRYAA (R116C), CRYAB (R120G), and CRYGC (T5P).

Methods: A mammalian two-hybrid system was used to assay the protein-protein interactions.

View Article and Find Full Text PDF

betaB2- and gammaC-crystallins belong to the betagamma-crystallin superfamily and have very similar structures. Molecular spectroscopic techniques such as UV-visible absorption, circular dichroism, and fluorescence indicate they have similar biophysical properties. Their structures are characterized by the presence of two domains consisting of four Greek key motifs.

View Article and Find Full Text PDF

alpha A-Crystallin high-molecular-weight (HMW) aggregates were prepared by preheating at 80-90 degrees C and studied using spectroscopic measurements. Conformational differences were suggested based on data of increased bis-ANS (4,4(')-dianilino-1,1(')-binaphthalene-5,5(')-disulfonic acid) and ThT (thioflavin T) fluorescence as well as increased far-UV and decreased near-UV circular dichroism (CD). These results indicated that HMW aggregated alpha-crystallin was more hydrophobic than the native alpha-crystallin, possibly resulting from partial unfolding of alpha-crystallin.

View Article and Find Full Text PDF

Human lens gammaC-crystallin and T5P mutant were cloned, and their biophysical properties and thermodynamic stability were studied. CRYGC (T5P) is one of the many gamma-crystallin mutant genes for autosomal dominant congenital cataracts. This mutation is associated with Coppock-like cataract, and has the phenotype of a dust-like opacity of the fetal lens nucleus.

View Article and Find Full Text PDF

alpha-Crystallin consists of two subunits, alphaA and alphaB, and each can form an oligomer by itself or with the other. The aggregation arises from interdomain interactions. However, it is not known whether such interactions also exist among alpha-, beta-, and gamma-crystallins.

View Article and Find Full Text PDF