Background: The intrathecal (IT) dosing route introduces drugs directly into the CSF to bypass the blood-brain barrier and gain direct access to the CNS. We evaluated the use of convective forces acting on the cerebrospinal fluid as a means for increasing rostral delivery of IT dosed radioactive tracer molecules and antisense oligonucleotides (ASO) in the monkey CNS. We also measured the cerebral spinal fluid (CSF) volume in a group of cynomolgus monkeys.
View Article and Find Full Text PDFIntrathecal (IT) delivery and pharmacology of antisense oligonucleotides (ASOs) for the CNS have been successfully developed to treat spinal muscular atrophy. However, ASO pharmacokinetic (PK) and pharmacodynamic (PD) properties remain poorly understood in the IT compartment. We applied multimodal imaging techniques to elucidate the IT PK and PD of unlabeled, radioactively labeled, or fluorescently labeled ASOs targeting ubiquitously expressed or neuron-specific RNAs.
View Article and Find Full Text PDFPurpose: Tc-99m methylene diphosphonate ([Tc]MDP) is an in vivo bone imaging agent that also accumulates in injured skeletal muscle cells. The objective of this study was to investigate if [Tc]MDP could be used to detect muscle injury in the mdx mouse model of Duchenne muscular dystrophy (DMD).
Procedures: Static whole-body single-photon emission computed tomography/computed tomography (CT) scans were acquired at 2 h post-injection of [Tc]MDP in two cohorts of animals at different sites: one cohort of mice at 6, 15, and 19 weeks of age, and a separate cohort at 16 weeks.
In vitro properties of antibody-drug conjugates (ADCs) such as binding, internalization, and cytotoxicity are often well characterized before in vivo studies. Interpretation of in vivo studies might be significantly enhanced by molecular imaging tools. We present here a dual-isotope cryoimaging quantitative autoradiography (CIQA) methodology combined with advanced 3-dimensional imaging and analysis allowing for the simultaneous study of both antibody and payload distribution in tissues of interest in a preclinical setting.
View Article and Find Full Text PDFMulti-modality molecular imaging techniques have expanded the role of imaging biomarkers in the pharmaceutical industry and are beginning to streamline the drug discovery and development process. The World Molecular Imaging Society (WMIS) serves as a forum for discussing innovative and exploratory multi-modal, interdisciplinary molecular imaging research with a mission of bridging the gap between pathology and in vivo imaging. To formalize the role of the WMIS in pharmaceutical research efforts, members of the society have formed an interest group entitled Advancing Drug Discovery and Development using Molecular Imaging (ADDMI).
View Article and Find Full Text PDFPurpose: Competitive radiolabeled antibody imaging can determine the unlabeled intact antibody dose that fully blocks target binding but may be confounded by heterogeneous tumor penetration. We evaluated the hypothesis that smaller radiolabeled constructs can be used to more accurately evaluate tumor expressed receptors.
Procedures: The Krogh cylinder distributed model, including bivalent binding and variable intervessel distances, simulated distribution of smaller constructs in the presence of increasing doses of labeled antibody forms.
The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI.
View Article and Find Full Text PDFEffective drug delivery to tumors is a barrier to treatment with nanomedicines. Non-invasively tracking liposome biodistribution and tumor deposition in patients may provide insight into identifying patients that are well-suited for liposomal therapies. We describe a novel gradient-loadable chelator, 4-DEAP-ATSC, for incorporating (64)Cu into liposomal therapeutics for positron emission tomographic (PET).
View Article and Find Full Text PDFExposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH.
View Article and Find Full Text PDFPositron emission tomography (PET) imaging with the glucose analog 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F] FDG) has demonstrated clinical utility for the monitoring of brain glucose metabolism alteration in progressive neurodegenerative diseases. We examined dynamic [(18)F]FDG PET imaging and kinetic modeling of atlas-based regions to evaluate regional changes in the cerebral metabolic rate of glucose in the widely-used 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. Following a bolus injection of 18.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies.
View Article and Find Full Text PDFThe pharmaceutical and healthcare industries are being revolutionized by the use of genomics, proteomics, metabolomics, bioinformatics and molecular imaging. Patient friendly diagnosis, treatment and disease management options that utilize the combination of these technologies are currently in development. New innovations in pharmaceutical advancement are taking place at the intersection of these technologies, and will be coupled with societal changes as we move to a fully networked and individual-centric consumer base.
View Article and Find Full Text PDFMicrocalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time.
View Article and Find Full Text PDFRecent advances in small-animal molecular imaging instrumentation combined with well characterized antibody-labeling chemistry have enabled detailed in vivo measurements of antibody distribution in mouse models. This article reviews the strengths and limitations of in vivo antibody imaging methods with a focus on positron emission tomography and single-photon emission computed tomography and a brief discussion of the role of optical imaging in this application. A description of the basic principles behind the imaging techniques is provided along with a discussion of radiolabeling methods relevant to antibodies.
View Article and Find Full Text PDF