Publications by authors named "Jack Henderson"

After L858R and ex19del epidermal growth factor receptor (EGFR) mutations, ex20ins mutations are the third most common class of driver-mutations in non-small cell lung cancer (NSCLC). Unfortunately, first-, second-, and third-generation EGFR tyrosine kinase inhibitors (TKIs) are generally ineffective for ex20ins patients due to insufficient mutant activity and selectivity over wild-type EGFR, leading to dose-limiting toxicities. While significant advances in recent years have been made toward identifying potent EGFR ex20ins mutant inhibitors, mutant vs wild-type EGFR selectivity remains a significant challenge.

View Article and Find Full Text PDF

Like temperature and pressure, solution pH is an important environmental variable in biomolecular simulations. Virtually all proteins depend on pH to maintain their structure and function. In conventional molecular dynamics (MD) simulations of proteins, pH is implicitly accounted for by assigning and fixing protonation states of titratable sidechains.

View Article and Find Full Text PDF

Constant pH molecular dynamics (MD) simulations sample protonation states on the fly according to the conformational environment and user specified pH conditions; however, the current accuracy is limited due to the use of implicit-solvent models or a hybrid solvent scheme. Here, we report the first GPU-accelerated implementation, parametrization, and validation of the all-atom continuous constant pH MD (CpHMD) method with particle-mesh Ewald (PME) electrostatics in the Amber22 engine. The titration parameters for Asp, Glu, His, Cys, and Lys were derived for the CHARMM c22 and Amber ff14sb and ff19sb force fields.

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MAPK) are important therapeutic targets, and yet no inhibitors have advanced to the market. Here we applied the GPU-accelerated continuous constant pH molecular dynamics (CpHMD) to calculate the p 's and profile the cysteine reactivities of all 14 MAPKs for assisting the targeted covalent inhibitor design. The simulations not only recapitulated but also rationalized the reactive cysteines in the front pocket of JNK1/2/3 and the extended front pocket of p38α.

View Article and Find Full Text PDF

Malaria remains a global health threat─over 400,000 deaths occurred in 2019. Plasmepsins are promising targets of antimalarial therapeutics; however, no inhibitors have reached the clinic. To fuel the progress, a detailed understanding of the pH- and ligand-dependent conformational dynamics of plasmepsins is needed.

View Article and Find Full Text PDF

Many membrane channels, transporters, and receptors utilize a pH gradient or proton coupling to drive functionally relevant conformational transitions. Conventional molecular dynamics simulations employ fixed protonation states, thus neglecting the coupling between protonation and conformational equilibria. Here we describe the membrane-enabled hybrid-solvent continuous constant pH molecular dynamics method for capturing atomic details of proton-coupled conformational dynamics of transmembrane proteins.

View Article and Find Full Text PDF

Renin is a pepsin-like aspartyl protease and an important drug target for the treatment of hypertension; despite three decades' research, its pH-dependent structure-function relationship remains poorly understood. Here, we employed continuous constant pH molecular dynamics (CpHMD) simulations to decipher the acid/base roles of renin's catalytic dyad and the conformational dynamics of the flap, which is a common structural feature among aspartyl proteases. The calculated p's suggest that catalytic Asp38 and Asp226 serve as the general base and acid, respectively, in agreement with experiment and supporting the hypothesis that renin's neutral optimum pH is due to the substrate-induced p shifts of the aspartic dyad.

View Article and Find Full Text PDF

The SARS coronavirus 2 (SARS-CoV-2) main protease (Mpro) is an attractive broad-spectrum antiviral drug target. Despite the enormous progress in structure elucidation, the Mpro's structure-function relationship remains poorly understood. Recently, a peptidomimetic inhibitor has entered clinical trial; however, small-molecule orally available antiviral drugs have yet to be developed.

View Article and Find Full Text PDF

Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP is removed.

View Article and Find Full Text PDF

NhaA is a prototypical sodium-proton antiporter responsible for maintaining cellular ion and volume homeostasis by exchanging two protons for one sodium ion; despite two decades of research, the transport mechanism of NhaA remains poorly understood. Recent crystal structure and computational studies suggested Lys300 as a second proton-binding site; however, functional measurements of several K300 mutants demonstrated electrogenic transport, thereby casting doubt on the role of Lys300. To address the controversy, we carried out state-of-the-art continuous constant pH molecular dynamics simulations of NhaA mutants K300A, K300R, K300Q/D163N, and K300Q/D163N/D133A.

View Article and Find Full Text PDF

Broad-spectrum antiviral drugs are urgently needed to stop the Coronavirus Disease 2019 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle.

View Article and Find Full Text PDF

Purpose The purpose of this study was to survey school speech-language practitioners' self-perceptions of their confidence, knowledge, and need for support for working with school-age students who stutter (SWS). Method A total of 120 school-based speech-language practitioners from 27 Nashville, Tennessee, area counties completed an online, 35-item survey examining caseloads, coursework, continuing education, experience, and perceived levels of skill and confidence in service provision to SWS. They also rated their need for consultation from speech-language pathologists who specialize in stuttering to improve their skills with SWS.

View Article and Find Full Text PDF

Broad-spectrum antiviral drugs are urgently needed to stop the COVID-19 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle.

View Article and Find Full Text PDF

Purpose: To determine whether impaired or absent stereopsis affects the ability to perform simulated microsurgical tasks.

Setting: University of Edinburgh, United Kingdom.

Design: Prospective randomized cross-over study.

View Article and Find Full Text PDF

The role of water in protein-ligand binding has been an intensely studied topic in recent years; however, how ligand protonation state change perturbs water has not been considered. Here we show that water dynamics and interactions can be controlled by the protonation state of ligand using continuous constant pH molecular dynamics simulations of two closely related model systems, β-secretase 1 and 2 (BACE1 and BACE2), in complex with a small-molecule inhibitor. Simulations revealed that, upon binding, the inhibitor pyrimidine ring remains deprotonated in BACE1 but becomes protonated in BACE2.

View Article and Find Full Text PDF

Despite the relevance of understanding structure-function relationships, robust prediction of proton donors and nucleophiles in enzyme active sites remains challenging. Here we tested three types of state-of-the-art computational methods to calculate the p K's of the buried and hydrogen bonded catalytic dyads in five enzymes. We asked the question what determines the p K order, i.

View Article and Find Full Text PDF

Objectives: This quality activity explored the prescribing patterns in an Older Persons Mental Health Inpatient Unit in order to establish whether the Anticholinergic Cognitive Burden Scale (ACB Scale) score on admission was reviewed to minimise anticholinergic cognitive burden (ACB) while maintaining therapeutic effects.

Methods: A retrospective electronic chart review of 50 discharged patients for any documented ACB review by the treating team, as well as the ACB Scale scores on admission and discharge.

Findings: ACB was rarely considered.

View Article and Find Full Text PDF

The C2A domain of synaptotagmin 7 (Syt7) is a Ca(2+) and membrane binding module that docks and inserts into cellular membranes in response to elevated intracellular Ca(2+) concentrations. Like other C2 domains, Syt7 C2A binds Ca(2+) and membranes primarily through three loop regions; however, it docks at Ca(2+) concentrations much lower than those required for other Syt C2A domains. To probe structural components of its unusually strong membrane docking, we conducted atomistic molecular dynamics simulations of Syt7 C2A under three conditions: in aqueous solution, in the proximity of a lipid bilayer membrane, and embedded in the membrane.

View Article and Find Full Text PDF