Publications by authors named "Jack Harmer"

Spin echo (SE) EPI offers an alternative to standard gradient echo (GE) EPI for functional MRI. SE-EPI offers improved spatial specificity, since signal changes originate from the microvasculature, but its lower functional sensitivity has limited the usage of this sequence in fMRI experiments. Differential fMRI paradigms, in which two closely matched stimulus conditions are used, can suppress the contribution from veins, thus also offering improved spatial specificity compared to conventional block or event-related designs with long "rest" periods.

View Article and Find Full Text PDF

Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney.

View Article and Find Full Text PDF

Purpose: In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging.

Methods: In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences.

View Article and Find Full Text PDF