Publications by authors named "Jack Dongarra"

Double-precision floating-point arithmetic (FP64) has been the de facto standard for engineering and scientific simulations for several decades. Problem complexity and the sheer volume of data coming from various instruments and sensors motivate researchers to mix and match various approaches to optimize compute resources, including different levels of floating-point precision. In recent years, machine learning has motivated hardware support for half-precision floating-point arithmetic.

View Article and Find Full Text PDF

A number of features of today's high-performance computers make it challenging to exploit these machines fully for computational science. These include increasing core counts but stagnant clock frequencies; the high cost of data movement; use of accelerators (GPUs, FPGAs, coprocessors), making architectures increasingly heterogeneous; and multi- ple precisions of floating-point arithmetic, including half-precision. Moreover, as well as maximizing speed and accuracy, minimizing energy consumption is an important criterion.

View Article and Find Full Text PDF

Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application.

View Article and Find Full Text PDF