Publications by authors named "Jack D Keene"

Article Synopsis
  • DND1 plays a crucial role in preserving germ cell identity; its dysfunction leads to abnormal differentiation, resulting in teratomas in mice or somatic replacements in zebrafish.
  • In a study using a knock-in mouse model (Dnd1GFP), two populations of male germ cells were identified during their resting phase, with one group expressing low levels of DND1-GFP and another group showing high levels.
  • RNA sequencing and immunoprecipitation revealed that DND1-GFP-hi cells have significantly higher Dnd1 transcript levels and interact with various epigenetic and translational regulators, suggesting a complex network managed by DND1 essential for germ cell function.
View Article and Find Full Text PDF

In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody.

View Article and Find Full Text PDF

The adult spermatogonial stem cell population arises from pluripotent primordial germ cells (PGCs) that enter the fetal testis around embryonic day (E)10.5. PGCs undergo rapid mitotic proliferation, then enter prolonged cell cycle arrest (G1/G0), during which they transition to pro-spermatogonia.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is integral to cancer progression, with considerable evidence that EMT has multiple intermediary stages. Understanding the mechanisms of this stepwise activation is of great interest. We recreated a genetically defined model in which primary cells were immortalized, resulting in migratory capacity, and subsequently H-Ras-transformed, causing malignancy and invasion.

View Article and Find Full Text PDF

Background/aims: Myofibroblasts (MF) derived from quiescent nonfibrogenic hepatic stellate cells (HSC) are the major sources of fibrous matrix in cirrhosis. Because many factors interact to regulate expansion and regression of MF-HSC populations, efforts to prevent cirrhosis by targeting any one factor have had limited success, motivating research to identify mechanisms that integrate these diverse inputs. As key components of RNA regulons, RNA binding proteins (RBPs) may fulfill this function by orchestrating changes in the expression of multiple genes that must be coordinately regulated to affect the complex phenotypic modifications required for HSC transdifferentiation.

View Article and Find Full Text PDF

Gene expression is the fundamental driving force that coordinates normal cellular processes and adapts to dysfunctional conditions such as oncogenic development and progression. While transcription is the basal process of gene expression, RNA transcripts are both the templates that encode proteins as well as perform functions that directly regulate diverse cellular processes. All levels of gene expression require coordination to optimize available resources, but how global gene expression drives cancers or responds to disrupting oncogenic mutations is not understood.

View Article and Find Full Text PDF

Post-transcriptional regulation of gene expression by RNA binding proteins (RBPs) and non-coding RNAs plays an important role in global gene expression. Many post-transcriptional regulators are misexpressed and misregulated in cancers, resulting in altered programs of protein biosynthesis that can drive tumor progression. While comparative studies of several RBPs and microRNAs expressed in various cancer types have been reported, a model system that can be used to quantify RBP regulation and functional outcomes during the initiation and early stages of tumorigenesis is lacking.

View Article and Find Full Text PDF

Post-transcriptional processes orchestrate gene expression through dynamic protein-RNA interactions. These interactions occur at specific sites determined by RNA sequence, secondary structure, or nucleotide modifications. Methods have been developed either to quantify binding of whole transcripts or to identify the binding sites, but there is none proven to quantify binding at both the whole transcript and binding site levels.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) and noncoding RNAs orchestrate post-transcriptional processes through the recognition of specific sites on targeted transcripts. Thus, understanding the connection between binding to specific sites and active regulation of the whole transcript is essential. Many immunoprecipitation techniques have been developed that identify either whole transcripts or binding sites of RBPs on each transcript using cell lysates.

View Article and Find Full Text PDF

The 18-kb Xist long noncoding RNA (lncRNA) is essential for X-chromosome inactivation during female eutherian mammalian development. Global structural architecture, cell-induced conformational changes, and protein-RNA interactions within Xist are poorly understood. We used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) to examine these features of Xist at single-nucleotide resolution both in living cells and ex vivo.

View Article and Find Full Text PDF

Global mRNA abundance depends on the balance of synthesis and decay of a population of mRNAs. To account for this balance during activation of T cells, we used metabolic labeling to quantify the contributions of RNA transcription and decay over a 4 h time course during activation of leukemia-derived Jurkat T cells. While prior studies suggested more than half of the changes in mRNA abundance were due to RNA stability, we found a smaller but more interesting population of mRNAs changed stability.

View Article and Find Full Text PDF

We demonstrate that both Hepatitis C virus (HCV) and Bovine Viral Diarrhea virus (BVDV) contain regions in their 5' UTRs that stall and repress the enzymatic activity of the cellular 5'-3' exoribonuclease XRN1, resulting in dramatic changes in the stability of cellular mRNAs. We used biochemical assays, virus infections, and transfection of the HCV and BVDV 5' untranslated regions in the absence of other viral gene products to directly demonstrate the existence and mechanism of this novel host-virus interaction. In the context of HCV infection, we observed globally increased stability of mRNAs resulting in significant increases in abundance of normally short-lived mRNAs encoding a variety of relevant oncogenes and angiogenesis factors.

View Article and Find Full Text PDF

Unlabelled: The ability of CD8+ T cells to effectively limit HIV-1 replication and block HIV-1 acquisition is determined by the capacity to rapidly respond to HIV-1 antigens. Understanding both the functional properties and regulation of an effective CD8+ response would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies. We assessed the antigen specificity, cytokine signature, and mechanisms that regulate antiviral gene expression in CD8+ T cells from a cohort of HIV-1-infected virus controllers (VCs) (<5,000 HIV-1 RNA copies/ml and CD4+ lymphocyte counts of >400 cells/μl) capable of soluble inhibition of HIV-1.

View Article and Find Full Text PDF

The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression.

View Article and Find Full Text PDF

Background: Sequence specific RNA binding proteins are important regulators of gene expression. Several related crosslinking-based, high-throughput sequencing methods, including PAR-CLIP, have recently been developed to determine direct binding sites of global protein-RNA interactions. However, no studies have quantitatively addressed the contribution of background binding to datasets produced by these methods.

View Article and Find Full Text PDF

The 5' and 3' untranslated regions (UTRs) of messenger RNAs (mRNAs) function as platforms that can determine the fate of each mRNA individually and in aggregate. Multiple mRNAs that encode proteins that are functionally related often interact with RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) that coordinate their expression in time and space as RNA regulons within the ribonucleoprotein (RNP) infrastructure we term the ribonome. Recent ribonomic methods have emerged that can determine which mRNAs are bound and regulated by RBPs and ncRNAs, some of which act in combination to determine global outcomes.

View Article and Find Full Text PDF

The ubiquitously expressed RNA-binding protein HuR increases the stability and translation of mRNAs encoding growth regulatory proteins that promote proliferation in a variety of cell types. However, the three neuron-specific ELAV/Hu proteins, HuB, HuC and HuD, while binding to the same types of mRNAs, are required instead for neuronal differentiation, and it becomes difficult to reconcile these contrary functions when all four Hu proteins are expressed in the same neuron. HuR mRNA exists as three alternatively polyadenylated variants, a 1.

View Article and Find Full Text PDF

Crosslinking and immunoprecipitation (CLIP) protocols have made it possible to identify transcriptome-wide RNA-protein interaction sites. In particular, PAR-CLIP utilizes a photoactivatable nucleoside for more efficient crosslinking. We present an approach, centered on the novel PARalyzer tool, for mapping high-confidence sites from PAR-CLIP deep-sequencing data.

View Article and Find Full Text PDF

RNA-binding proteins coordinate the fates of multiple RNAs, but the principles underlying these global interactions remain poorly understood. We elucidated regulatory mechanisms of the RNA-binding protein HuR, by integrating data from diverse high-throughput targeting technologies, specifically PAR-CLIP, RIP-chip, and whole-transcript expression profiling. The number of binding sites per transcript, degree of HuR association, and degree of HuR-dependent RNA stabilization were positively correlated.

View Article and Find Full Text PDF

Maintenance of genomic stability depends on the DNA damage response, a biologic barrier in early stages of cancer development. Failure of this response results in genomic instability and high predisposition toward lymphoma, as seen in patients with ataxia-telangiectasia mutated (ATM) dysfunction. ATM activates multiple cell-cycle checkpoints and DNA repair after DNA damage, but its influence on posttranscriptional gene expression has not been examined on a global level.

View Article and Find Full Text PDF

Recent systems studies of gene expression have begun to dissect the layers of regulation that underlie the eukaryotic transcriptome, the combined consequence of transcriptional and posttranscriptional events. Among the regulatory layers of the transcriptome are those of the ribonome, a highly dynamic environment of ribonucleoproteins in which RNA-binding proteins (RBPs), noncoding regulatory RNAs (ncRNAs) and messenger RNAs (mRNAs) interact. While multiple mRNAs are coordinated together in groups within the ribonome of a eukaryotic cell, each individual type of mRNA consists of multiple copies, each of which has an opportunity to be a member of more than one modular group termed a posttranscriptional RNA operon or regulon (PTRO).

View Article and Find Full Text PDF

Background: RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra- or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins.

Methodology: We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin.

View Article and Find Full Text PDF

Transcriptomics is used to quantify changes in accumulated levels of mRNAs following cellular activation. These changes arise from the opposing fluxes of transcription and mRNA decay, both of which affect the functional dynamics of global gene expression. A study published recently in BMC Genomics focuses on the contribution made by mRNA stability in shaping the kinetics of gene responses in mammalian cells.

View Article and Find Full Text PDF

Gene expression starts with transcription and is followed by multiple posttranscriptional processes that carry out the splicing, capping, polyadenylation, and export of each mRNA. Interest in posttranscriptional regulation has increased recently with explosive discoveries of large numbers of noncoding RNAs such as microRNAs, yet posttranscriptional processes depend largely on the functions of RNA-binding proteins as well. Glucocorticoid nuclear receptors are classical examples of environmentally reactive activators and repressors of transcription, but there has also been a significant increase in studies of the role of posttranscriptional regulation in endocrine responses, including insulin and insulin receptors, and parathyroid hormone as well as other hormonal responses, at the levels of RNA stability and translation.

View Article and Find Full Text PDF