Cone photoreceptors in the living human eye have recently been imaged with micron-scale resolution in all three spatial dimensions using adaptive optics optical coherence tomography. While these advances have allowed non-invasive study of the three-dimensional structure of living human cones, studies of their function and physiology are still hampered by the difficulties to monitor the same cells over time. The purpose of this study is to demonstrate the feasibility of cone monitoring using ultrahigh-resolution adaptive optics optical coherence tomography.
View Article and Find Full Text PDFIn vertebrate eyes, vision begins when the photoreceptor's outer segment absorbs photons and generates a neural signal destined for the brain. The extreme optical and metabolic demands of this process of phototransduction necessitate continual renewal of the outer segment. Outer segment renewal has been long studied in post-mortem rods using autoradiography, but has been observed neither in living photoreceptors nor directly in cones.
View Article and Find Full Text PDF