Publications by authors named "Jack Bui"

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Mechanistic understanding of the immune checkpoint receptor PD1 is largely based on mouse models, but human and mouse PD1 orthologs exhibit only 59.6% identity in amino acid sequences. Here we show that human PD1 is more inhibitory than mouse PD1 due to stronger interactions with the ligands PDL1 and PDL2 and with the effector phosphatase Shp2.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) mediate intercellular communication in many physiologic processes and can modulate immune responses in individuals with cancer. Most studies of EVs in cancer have focused on their tumour promoting properties. Whether and how EVs might mediate tumour regression besides carrying antigens has not been well characterized.

View Article and Find Full Text PDF

Neuroendocrine tumors (NETs) of the pancreas are rare neoplasms that present complex challenges to diagnosis and treatment due to their indolent course. The incidence of pancreatic neuroendocrine tumors has increased significantly over the past two decades. A limited number of pancreatic neuroendocrine cell lines are currently available for the research.

View Article and Find Full Text PDF

Motivation: Precise identification of cancer cells in patient samples is essential for accurate diagnosis and clinical monitoring but has been a significant challenge in machine learning approaches for cancer precision medicine. In most scenarios, training data are only available with disease annotation at the subject or sample level. Traditional approaches separate the classification process into multiple steps that are optimized independently.

View Article and Find Full Text PDF

Background: Discovery that ~16% of T cells naturally co-express two T-cell receptor (TCR) clonotypes prompts examining the role of dual TCR cells in immune functions.

Methods: Using TCRα-reporter transgenic mice, enabling unambiguous identification of single-TCR and dual-TCR cells, we tested the role of dual TCR cells in antitumor immune responses against immune-responsive syngeneic 6727 sarcoma and immune-resistant B16F10 melanoma.

Results: Dual TCR cells were specifically increased among tumor-infiltrating lymphocytes (TILs) in both models, indicating selective advantage in antitumor responses.

View Article and Find Full Text PDF

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues.

View Article and Find Full Text PDF

CD28 and CTLA4 are T cell coreceptors that competitively engage B7 ligands CD80 and CD86 to control adaptive immune responses. While the role of CTLA4 in restraining CD28 costimulatory signaling is well-established, the mechanism has remained unclear. Here, we report that human T cells acquire antigen-presenting-cell (APC)-derived B7 ligands and major histocompatibility complex (MHC) via trogocytosis through CD28:B7 binding.

View Article and Find Full Text PDF

Motivation: Precise identification of cancer cells in patient samples is essential for accurate diagnosis and clinical monitoring but has been a significant challenge in machine learning approaches for cancer precision medicine. In most scenarios, training data are only available with disease annotation at the subject or sample level. Traditional approaches separate the classification process into multiple steps that are optimized independently.

View Article and Find Full Text PDF

In the tumor microenvironment, immune cells and tumor cells interact in a process called cancer immunoediting, giving rise to changes in gene expression, metabolism, mutational burden, and cellularity in the tumor. This SnapShot compares endogenous versus therapy-induced cancer immunoediting and outlines the molecular and cellular characteristics of interactions that result in complete tumor regression versus tumor escape and progression. To view this SnapShot, open or download the PDF.

View Article and Find Full Text PDF

Despite the promise of immune checkpoint inhibition (ICI), therapeutic responses remain limited. This raises the possibility that standard of care treatments delivered in concert may compromise the tumor response. To address this, we employ tobacco-signature head and neck squamous cell carcinoma murine models in which we map tumor-draining lymphatics and develop models for regional lymphablation with surgery or radiation.

View Article and Find Full Text PDF

Locally advanced cancers remain therapeutically challenging to eradicate. The most successful treatments continue to combine decades old non-targeted chemotherapies with radiotherapy that unfortunately increase normal tissue damage in the irradiated field and have systemic toxicities precluding further treatment intensification. Therefore, alternative molecularly guided systemic therapies are needed to improve patient outcomes when applied with radiotherapy.

View Article and Find Full Text PDF

The molecular underpinnings of acquired resistance to carboplatin are poorly understood and often inconsistent between in vitro modeling studies. After sequential treatment cycles, multiple isogenic clones reached similar levels of resistance, but significant transcriptional heterogeneity. Gene-expression based virtual synchronization of 26,772 single cells from 2 treatment steps and 4 resistant clones was used to evaluate the activity of Hallmark gene sets in proliferative (P) and quiescent (Q) phases.

View Article and Find Full Text PDF

Epidemiological studies demonstrate an association between breast cancer (BC) and systemic dysregulation of glucose metabolism. However, how BC influences glucose homeostasis remains unknown. We show that BC-derived extracellular vesicles (EVs) suppress pancreatic insulin secretion to impair glucose homeostasis.

View Article and Find Full Text PDF

Purpose: Kaposi sarcoma (KS), an endothelial cell tumor associated with KS herpesvirus (KSHV), remains among the most common malignancies occurring with HIV infection (HIV-KS). As an oral anti-inflammatory, antiangiogenic, and immunomodulatory agent, lenalidomide is potentially an attractive alternative to standard chemotherapy for KS.

Experimental Design: The primary objectives of this phase I/II trial were to determine the maximum tolerated dose (MTD) and response rates for lenalidomide in HIV-KS.

View Article and Find Full Text PDF

Targeting the delivery of therapeutics specifically to diseased tissue enhances their efficacy and decreases their side effects. Here we show that mesenchymal stromal cells with their nuclei removed by density-gradient centrifugation following the genetic modification of the cells for their display of chemoattractant receptors and endothelial-cell-binding molecules are effective vehicles for the targeted delivery of therapeutics. The enucleated cells neither proliferate nor permanently engraft in the host, yet retain the organelles for energy and protein production, undergo integrin-regulated adhesion to inflamed endothelial cells, and actively home to chemokine gradients established by diseased tissues.

View Article and Find Full Text PDF

Intratumoral immunotherapy is an emerging modality for the treatment of solid tumors. Toll-like receptor (TLR) agonists have shown promise for eliciting immune responses, but systemic administration often results in the development of adverse side effects. Herein, we investigate whether localized delivery of the TLR agonist, resiquimod (R848), via platelet membrane-coated nanoparticles (PNP-R848) elicits antitumor responses.

View Article and Find Full Text PDF

Rolling neutrophils form tethers with submicron diameters. Here, we report that these tethers detach, forming elongated neutrophil-derived structures (ENDS) in the vessel lumen. We studied ENDS formation in mice and humans in vitro and in vivo.

View Article and Find Full Text PDF

IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) encompasses a spectrum of gastrointestinal disorders driven by dysregulated immune responses against gut microbiota. We integrated single-cell RNA and antigen receptor sequencing to elucidate key components, cellular states, and clonal relationships of the peripheral and gastrointestinal mucosal immune systems in health and ulcerative colitis (UC). UC was associated with an increase in IgG1 plasma cells in colonic tissue, increased colonic regulatory T cells characterized by elevated expression of the transcription factor ZEB2, and an enrichment of a γδ T cell subset in the peripheral blood.

View Article and Find Full Text PDF

There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers.

View Article and Find Full Text PDF

The synthesis of high surface area porous noble metal nanomaterials generally relies on time consuming coalescence of pre-formed nanoparticles, followed by rinsing and supercritical drying steps, often resulting in mechanically fragile materials. Here, a method to synthesize nanostructured porous platinum-based macrotubes and macrobeams with a square cross section from insoluble salt needle templates is presented. The combination of oppositely charged platinum, palladium, and copper square planar ions results in the rapid formation of insoluble salt needles.

View Article and Find Full Text PDF

Combined immunotherapy targeting the immune checkpoint receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1), or CTLA-4 and the PD-1 ligand (PD-L1) exhibits superior anti-tumor responses compared with single-agent therapy. Here, we examined the molecular basis for this synergy. Using reconstitution assays with fluorescence readouts, we found that PD-L1 and the CTLA-4 ligand CD80 heterodimerize in cis but not trans.

View Article and Find Full Text PDF

High-throughput single-cell cytometry technologies have significantly improved our understanding of cellular phenotypes to support translational research and the clinical diagnosis of hematological and immunological diseases. However, subjective and ad hoc manual gating analysis does not adequately handle the increasing volume and heterogeneity of cytometry data for optimal diagnosis. Prior work has shown that machine learning can be applied to classify cytometry samples effectively.

View Article and Find Full Text PDF

Expression of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases (RTK) has been associated with cancer progression, metastasis, and drug resistance. In immune cells, TAM RTKs can dampen inflammation in favor of homeostatic wound-healing responses, thus potentially contributing to the evasion of cancer cells from immune surveillance. Here we characterize the small-molecule RXDX-106 as a selective and potent pan-TAM RTK inhibitor with slow dissociation kinetics and significant antitumor activity in multiple syngeneic tumor models.

View Article and Find Full Text PDF