A strategy is presented to implement Gaussian process potentials in molecular simulations through parallel programming. Attention is focused on the three-body nonadditive energy, though all algorithms extend straightforwardly to the additive energy. The method to distribute pairs and triplets between processes is general to all potentials.
View Article and Find Full Text PDFA strategy is outlined to reduce the number of training points required to model intermolecular potentials using Gaussian processes, without reducing accuracy. An asymptotic function is used at a long range, and the crossover distance between this model and the Gaussian process is learnt from the training data. The results are presented for different implementations of this procedure, known as boundary optimization, across the following dimer systems: CO-Ne, HF-Ne, HF-Na, CO-Ne, and (CO).
View Article and Find Full Text PDF