Radiation therapy (RT), a mainstay treatment for head and neck squamous cell carcinoma (HNSCC), kills cancer cells and modulates the tumor immune microenvironment. We sought to assess the effect of RT in combination with PD-L1/TGF-β dual blockade in squamous cell carcinomas (SCC) and analyze the underlying mechanisms. We transplanted mouse SCC cells derived from keratin-15 (K15) stem cells harboring Kras/Smad4 mutations into syngeneic recipients and irradiated tumors followed by PD-L1/TGF-β dual blockade.
View Article and Find Full Text PDFImmunotherapies for the treatment of solid tumors continue to develop in preclinical and clinical research settings. Unfortunately, for many patients the tumor fails to respond or becomes resistant to therapies such as checkpoint inhibitors (CPIs) targeting programmed cell death protein-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen-4 (CTLA-4). In many cancers, failed response to CPIs can be attributed to poor T cell infiltration, dominant immunosuppression, and exhausted immune responses.
View Article and Find Full Text PDFThe approval of immunotherapies such as checkpoint inhibitors (CPIs), adoptive cell therapies and cancer vaccines has revolutionized the way cancer treatment is approached. While immunotherapies have improved clinical outcome in a variety of tumor types, some cancers have proven harder to combat using single agents, underscoring the need for multi-targeted immunotherapy approaches. Efficacy of CPIs and cancer vaccines requires patients to have a competent immune system with adequate cell numbers while the efficacy of adoptive cellular therapy is limited by the expansion and persistence of cells after infusion.
View Article and Find Full Text PDFIn utero exposure to maternal immune activation (MIA) is an environmental risk factor for neurodevelopmental and neuropsychiatric disorders. Animal models provide an opportunity to identify mechanisms driving neuropathology associated with MIA. We performed time-course transcriptional profiling of mouse cortical development following induced MIA via poly(I:C) injection at E12.
View Article and Find Full Text PDF