Publications by authors named "Jack A Wilson"

The extensively evaluated and consistent thermodynamic database, the Molten Salt Thermal Properties Database-Thermochemical (MSTDB-TC), was used along with additional thermodynamic values from other sources as examples of ways to examine molten salt reactor (MSR) fuel behavior. Relative stability with respect to halide potential and temperature for likely fuel and fission product components were mapped in Ellingham diagrams for the chloride and fluoride systems. The Ellingham diagrams provide a rich, visual means for identifying halide-forming components in proposed fuel/solvent salt systems.

View Article and Find Full Text PDF

Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic elements. However, because these approaches only interrogate short sequences, it remains challenging to perform high throughput (HT) assays on constructs containing combinations of sequence elements arranged across multi-kb length scales. Overcoming this barrier could accelerate synthetic biology; by screening diverse gene circuit designs, "composition-to-function" mappings could be created that reveal genetic part composability rules and enable rapid identification of behavior-optimized variants.

View Article and Find Full Text PDF

The preparation of a range of amino acid derived guanidine organocatalysts is reported together with their application to the Michael addition of 2-hydroxy-1,4-napthoquinone to β-nitrostyrene, achieving a maximum ee of 56%. Some insight into the mechanism was sought by using X-ray crystallography and a detailed study of the intra- and intermolecular hydrogen bonding is reported.

View Article and Find Full Text PDF

Chitosan nanofibrous membranes have immense potential in tissue engineering and drug delivery applications because of their increased surface area, high degree of biocompatibility, and their ability to mimic the extracellular matrix. However, their use is often limited due to their extreme hydrophilic nature causing them to lose their nanofibrous structure in vivo. In the present study, chitosan membranes were modified either by acylation reactions using fatty acids of different chain lengths or tert-butyloxycarbonyl (tBOC) protecting groups to increase the hydrophobicity of the membranes and protect the nanofibrous structure.

View Article and Find Full Text PDF