Schistosomes cause morbidity and death throughout the developing world due to the massive numbers of eggs female worms deposit into the blood of their host. Studies dating back to the 1920s show that female schistosomes rely on constant physical contact with a male worm both to become and remain sexually mature; however, the molecular details governing this process remain elusive. Here, we uncover a nonribosomal peptide synthetase that is induced in male worms upon pairing with a female and find that it is essential for the ability of male worms to stimulate female development.
View Article and Find Full Text PDFInfluenza viruses cause approximately half a million deaths every year worldwide. Vaccines are available but partially effective, and the number of antiviral medications is limited. Thus, it is crucial to develop therapeutic strategies to counteract this major pathogen.
View Article and Find Full Text PDFA series of -acyl benzothiazoles shows selective and potent cytotoxicity against cancer cell lines expressing cytochrome P450 4F11. A prodrug form is metabolized by cancer cells into an active inhibitor of stearoyl-CoA desaturase (SCD). Substantial variation on the acyl portion of the inhibitors allowed the identification of ()-, which balanced potency, solubility, and lipophilicity to allow proof-of-concept studies in mice.
View Article and Find Full Text PDFSpecific host pathways that may be targeted therapeutically to inhibit the replication of Ebola virus (EBOV) and other emerging viruses remain incompletely defined. A screen of 200,000 compounds for inhibition of an EBOV minigenome (MG) assay that measures the function of the viral polymerase complex identified as hits several compounds with an amino-tetrahydrocarbazole scaffold. This scaffold was structurally similar to GSK983, a compound previously described as having broad-spectrum antiviral activity due to its impairing de novo pyrimidine biosynthesis through inhibition of dihydroorotate dehydrogenase (DHODH).
View Article and Find Full Text PDFRalstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants.
View Article and Find Full Text PDFUbiquitous polyamine spermidine is not required for normal planktonic growth of but is essential for robust biofilm formation. However, the structural features of spermidine required for biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation.
View Article and Find Full Text PDFThe enzyme 15-prostaglandin dehydrogenase (15-PGDH) catalyzes the first step in the degradation of prostaglandins including PGE2. It is a negative regulator of tissue repair and regeneration in multiple organs. Accordingly, inhibitors of 15-PGDH are anticipated to elevate in vivo levels of PGE2 and to promote healing and tissue regeneration.
View Article and Find Full Text PDFThe small polyamine putrescine (1,4-diaminobutane) is ubiquitously and abundantly found in all three domains of life. It is a precursor, through N-aminopropylation or N-aminobutylation, for biosynthesis of the longer polyamines spermidine, sym-homospermidine, spermine, and thermospermine and longer and branched chain polyamines. Putrescine is also biochemically modified for purposes of metabolic regulation and catabolism, e.
View Article and Find Full Text PDFAgents that promote tissue regeneration could be beneficial in a variety of clinical settings, such as stimulating recovery of the hematopoietic system after bone marrow transplantation. Prostaglandin PGE2, a lipid signaling molecule that supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here, we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice.
View Article and Find Full Text PDFPurpose: Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system.
Methods: Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber.
The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage.
View Article and Find Full Text PDFThe P7C3 class of aminopropyl carbazole chemicals fosters the survival of neurons in a variety of rodent models of neurodegeneration or nerve cell injury. To uncover its mechanism of action, an active derivative of P7C3 was modified to contain both a benzophenone for photocrosslinking and an alkyne for CLICK chemistry. This derivative was found to bind nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme involved in the conversion of nicotinamide into nicotinamide adenine dinucleotide (NAD).
View Article and Find Full Text PDF(-)-P7C3-S243 is a neuroprotective aminopropyl carbazole with improved druglike properties compared with previously reported compounds in the P7C3 class. It protects developing neurons in a mouse model of hippocampal neurogenesis and protects mature neurons within the substantia nigra in a mouse model of Parkinson's disease. A short, enantioselective synthesis provides the neuroprotective agent in optically pure form.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is characterized by histopathological damage and long-term sensorimotor and cognitive dysfunction. Recent studies have reported the discovery of the P7C3 class of aminopropyl carbazole agents with potent neuroprotective properties for both newborn neural precursor cells in the adult hippocampus and mature neurons in other regions of the central nervous system. This study tested, for the first time, whether the highly active P7C3-A20 compound would be neuroprotective, promote hippocampal neurogenesis, and improve functional outcomes after experimental TBI.
View Article and Find Full Text PDFHypoxia inducible factors (HIFs) are heterodimeric transcription factors induced in many cancers where they frequently promote the expression of protumorigenic pathways. Though transcription factors are typically considered 'undruggable', the PAS-B domain of the HIF-2α subunit contains a large cavity within its hydrophobic core that offers a unique foothold for small-molecule regulation. Here we identify artificial ligands that bind within this pocket and characterize the resulting structural and functional changes caused by binding.
View Article and Find Full Text PDFHypoxia inducible factors (HIFs) are heterodimeric transcription factors induced in a variety of pathophysiological settings, including cancer. We describe the first detailed structure-activity relationship study of small molecules designed to inhibit HIF-2α-ARNT heterodimerization by binding an internal cavity of the HIF-2α PAS-B domain. Through a series of biophysical characterizations of inhibitor-protein interactions (NMR and X-ray crystallography), we have established the structural requirements for artificial inhibitors of the HIF-2α-ARNT PAS-B interaction.
View Article and Find Full Text PDFTumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) activates apoptosis through the death receptors DR4 and DR5. Because of its superior safety profile and high tumor specificity compared to other TNF family members, recombinant soluble TRAIL and agonistic antibodies against its receptors are actively being developed for clinical cancer therapy. Here, we describe the identification and characterization of the small molecules that directly target DR5 to initiate apoptosis in human cancer cells.
View Article and Find Full Text PDFWe previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD).
View Article and Find Full Text PDFWe previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFDegeneration of the hippocampus is associated with Alzheimer's disease and occurs very early in the progression of the disease. Current options for treating the cognitive symptoms associated with Alzheimer's are inadequate, giving urgency to the search for novel therapeutic strategies. Pharmacologic agents that safely enhance hippocampal neurogenesis may provide new therapeutic approaches.
View Article and Find Full Text PDFAn in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties.
View Article and Find Full Text PDF