Objective: Mitochondrial pyruvate dehydrogenase kinases 1-4 (PDKs1-4) negatively regulate activity of the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation. PDKs play a pivotal role in maintaining energy homeostasis and contribute to metabolic flexibility by attenuating PDC activity in various mammalian tissues. Cumulative evidence has shown that the up-regulation of PDK4 expression is tightly associated with obesity and diabetes.
View Article and Find Full Text PDFPyruvate dehydrogenase kinases 1-4 (PDK1-4) negatively control activity of the pyruvate dehydrogenase complex (PDC) and are up-regulated in obesity, diabetes, heart failure, and cancer. We reported earlier two novel pan-PDK inhibitors PS8 [4-((5-hydroxyisoindolin-2-yl)sulfonyl)benzene-1,3-diol] (1) and PS10 [2-((2,4-dihydroxyphenyl)sulfonyl)isoindoline-4,6-diol] (2) that targeted the ATP-binding pocket in PDKs. Here, we developed a new generation of PDK inhibitors by extending the dihydroxyphenyl sulfonylisoindoline scaffold in 1 and 2 to the entrance region of the ATP-binding pocket in PDK2.
View Article and Find Full Text PDFThe mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation.BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6- dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC(50) = 3.
View Article and Find Full Text PDFPyruvate dehydrogenase kinase isoforms (PDKs 1-4) negatively regulate activity of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation. PDK isoforms are up-regulated in obesity, diabetes, heart failure, and cancer and are potential therapeutic targets for these important human diseases. Here, we employed a structure-guided design to convert a known Hsp90 inhibitor to a series of highly specific PDK inhibitors, based on structural conservation in the ATP-binding pocket.
View Article and Find Full Text PDFThe branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP].
View Article and Find Full Text PDFThe branched-chain α-ketoacid dehydrogenase phosphatase (BDP) component of the human branched-chain α-ketoacid dehydrogenase complex (BCKDC) has been expressed in Escherichia coli and purified in the soluble form. The monomeric BDP shows a strict dependence on Mn(2+) ions for phosphatase activity, whereas Mg(2+) and Ca(2+) ions do not support catalysis. Metal binding constants for BDP, determined by competition isothermal titration calorimetry, are 2.
View Article and Find Full Text PDFThe purified mammalian branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain α-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine.
View Article and Find Full Text PDFDetermination of the stoichiometry of macromolecular assemblies is fundamental to an understanding of how they function. Many different biophysical methodologies may be used to determine stoichiometry. In the past, both sedimentation equilibrium and sedimentation velocity analytical ultracentrifugation have been employed to determine component stoichiometries.
View Article and Find Full Text PDFWe report five mutations, three of them novel, responsible for maple syrup urine disease in four unrelated Cypriot families. The five children studied are the first cases of classic maple syrup urine disease to be reported among Cypriots. The first novel mutation identified is a single-base deletion in exon 6 of the Elalpha gene (c.
View Article and Find Full Text PDFThe human pyruvate dehydrogenase complex (PDC) is a 9.5-megadalton catalytic machine that employs three catalytic components, i.e.
View Article and Find Full Text PDFWe report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-alpha (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-alpha prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites.
View Article and Find Full Text PDFHuman pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core.
View Article and Find Full Text PDFPyruvate dehydrogenase kinase (PDK) isoforms are molecular switches that downregulate the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation in mitochondria. We have determined structures of human PDK1 or PDK3 bound to the inhibitors AZD7545, dichloroacetate (DCA), and radicicol. We show that the trifluoromethylpropanamide end of AZD7545 projects into the lipoyl-binding pocket of PDK1.
View Article and Find Full Text PDFA long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical.
View Article and Find Full Text PDFThe dihydrolipoamide acyltransferase (E2b) component of the branched-chain alpha-ketoacid dehydrogenase complex forms a cubic scaffold that catalyzes acyltransfer from S-acyldihydrolipoamide to CoA to produce acyl-CoA. We have determined the first crystal structures of a mammalian (bovine) E2b core domain with and without a bound CoA or acyl-CoA. These structures reveal both hydrophobic and the previously unreported ionic interactions between two-fold-related trimers that build up the cubic core.
View Article and Find Full Text PDFThe homo-24-meric dihydrolipoyl transacylase (E2) scaffold of the human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) contains the lipoyl-bearing domain (hbLBD), the subunit-binding domain (hbSBD) and the inner core domain that are linked to carry out E2 functions in substrate channeling and recognition. In this study, we employed NMR techniques to determine the structure of hbSBD and dynamics of several truncated constructs from the E2 component of the human BCKDC, including hbLBD (residues 1-84), hbSBD (residues 111-149), and a di-domain (hbDD) (residues 1-166) comprising hbLBD, hbSBD and the interdomain linker. The solution structure of hbSBD consists of two nearly parallel helices separated by a long loop, similar to the structures of the SBD isolated from other species, but it lacks the short 3(10) helix.
View Article and Find Full Text PDFThe dehydrogenase/decarboxylase (E1b) component of the 4 MD human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is a thiamin diphosphate (ThDP)-dependent enzyme. We have determined the crystal structures of E1b with ThDP bound intermediates after decarboxylation of alpha-ketoacids. We show that a key tyrosine residue in the E1b active site functions as a conformational switch to reduce the reactivity of the ThDP cofactor through interactions with its thiazolium ring.
View Article and Find Full Text PDFThe 9.5 MDa human pyruvate dehydrogenase complex (PDC) utilizes the specific dihydrolipoamide dehydrogenase (E3) binding protein (E3BP) to tether the essential E3 component to the 60-meric core of the complex. Here, we report crystal structures of the binding domain (E3BD) of human E3BP alone and in complex with human E3 at 1.
View Article and Find Full Text PDFHuman dihydrolipoamide dehydrogenase (hE3) is an enzymatic component common to the mitochondrial alpha-ketoacid dehydrogenase and glycine decarboxylase complexes. Mutations to this homodimeric flavoprotein cause the often-fatal human disease known as E3 deficiency. To catalyze the oxidation of dihydrolipoamide, hE3 uses two molecules: non-covalently bound FAD and a transiently bound substrate, NAD+.
View Article and Find Full Text PDFThe human pyruvate dehydrogenase complex (PDC) is regulated by reversible phosphorylation by four isoforms of pyruvate dehydrogenase kinase (PDK). PDKs phosphorylate serine residues in the dehydrogenase (E1p) component of PDC, but their amino-acid sequences are unrelated to eukaryotic Ser/Thr/Tyr protein kinases. PDK3 binds to the inner lipoyl domains (L2) from the 60-meric transacetylase (E2p) core of PDC, with concomitant stimulated kinase activity.
View Article and Find Full Text PDFThe human mitochondrial branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is a 4 MDa macromolecular machine comprising three catalytic components (E1b, E2b, and E3), a kinase, and a phosphatase. The BCKDC overall activity is tightly regulated by phosphorylation in response to hormonal and dietary stimuli. We report that phosphorylation of Ser292-alpha in the E1b active site channel results in an order-to-disorder transition of the conserved phosphorylation loop carrying the phosphoryl serine.
View Article and Find Full Text PDFThe decarboxylase/dehydrogenase (E1b) component of the 4-megadalton human branched-chain alpha-keto acid dehydrogenase (BCKD) metabolic machine is a thiamin diphosphate (ThDP)-dependent enzyme with a heterotetrameric cofactor-binding fold. The E1b component catalyzes the decarboxylation of alpha-keto acids and the subsequent reductive acylation of the lipoic acid-bearing domain (LBD) from the 24-meric transacylase (E2b) core. In the present study, we show that the binding of cofactor ThDP to the E1b active site induces a disorder-to-order transition of the conserved phosphorylation loop carrying the two phosphorylation sites Ser(292)-alpha and Ser(302)-alpha, as deduced from the 1.
View Article and Find Full Text PDFMaple syrup urine disease (MSUD) results from mutations affecting different subunits of the mitochondrial branched-chain alpha-ketoacid dehydrogenase complex. In this study, we identified seven novel mutations in MSUD patients from Israel. These include C219W-alpha (TGC to TGG) in the E1alpha subunit; H156Y-beta (CAT to TAT), V69G-beta (GTT to GGT), IVS 9 del[-7:-4], and 1109 ins 8bp (exon 10) in the E1beta subunit; and H391R (CAC to CGC) and S133stop (TCA to TGA) affecting the E2 subunit of the branched-chain alpha-ketoacid dehydrogenase complex.
View Article and Find Full Text PDF