Publications by authors named "Jacimaria Batista"

Regulatory frameworks for potable reuse often include stringent log reduction value (LRV) targets to ensure public health protection against exposure to viruses and protozoa. To achieve overall LRV targets and reduce associated capital and operational costs, it is important to maximize LRV credits awarded to each unit process in a potable reuse treatment train. This may include processes that are historically uncredited or undercredited, such as secondary biological wastewater treatment incorporating activated sludge and secondary clarification.

View Article and Find Full Text PDF

This research investigates the biodegradation of perchlorate in the presence of the co-contaminants nitrate and chlorate using soluble and slow-release carbon sources. In addition, the impact of bio-augmentation and dilution, which results in lower total dissolved salts (TDS) and contaminant levels, is examined. Laboratory microcosms were conducted using actual groundwater and soils from a contaminated aquifer.

View Article and Find Full Text PDF

The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O/TOC ratios ranging from 0.

View Article and Find Full Text PDF

  Common to all National Pollutant Discharge Elimination System (NPDES) permits in the United States is a limit on biochemical oxygen demand (BOD). Chemical oxygen demand (COD), total organic carbon (TOC), and fluorescence spectroscopy are also capable of quantifying organic content, although the mechanisms of quantification and the organic fractions targeted differ for each test. This study explores correlations between BOD5 and these alternate test procedures using facility influent, primary effluent, and facility effluent samples from a full-scale water resource recovery facility.

View Article and Find Full Text PDF

Ion-exchange (IX) is the most feasible technology for perchlorate removal from drinking water. Reuse of resins present challenges, however. Selective resins are non-regenerable, and are incinerated after one time use, while non-selective resins, when regenerable, produce a waste stream that contains high concentration of perchlorate that must be disposed of.

View Article and Find Full Text PDF

Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.

View Article and Find Full Text PDF

Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids.

View Article and Find Full Text PDF

In this study, simultaneous denitrification and phosphorus (P) removal were investigated in batch tests using nitrified mixed liquor and secondary wastewater influent from a full-scale treatment plant and different levels of acetate and propionate as supplemental carbon sources. Without supplemental carbon source, denitrification occurred at low rate and P release and P uptake was negatively affected (i.e.

View Article and Find Full Text PDF

A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater.

View Article and Find Full Text PDF

The microbial selection on an enhanced biological phosphorus removal (EBPR) system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with glucose as the carbon source. Fluorescence In Situ Hybridization analysis was performed to target two polyphosphate accumulating organisms (PAOs) (i.e.

View Article and Find Full Text PDF

Ion exchange using perchlorate-selective resin is possibly the most feasible technology for perchlorate removal from water. However, in current water treatment applications, selective resins are used once and then incinerated, making the ion-exchange process economically and environmentally unsustainable. A new concept has been developed involving the biological regeneration of resin-containing perchlorate.

View Article and Find Full Text PDF

This study evaluates the impact of urban growth in the Las Vegas Valley (LVV), Nevada, USA on salinity of the Colorado River. In the past thirty eight years the LVV population has grown from 273,288 (1970) to 1,986,146 (2008). The wastewater effluents and runoff from the valley are diverted back to the Colorado River through the Las Vegas Wash (LVW).

View Article and Find Full Text PDF

In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource.

View Article and Find Full Text PDF

Chromium removal from ion-exchange (IX) brines presents a serious challenge to the water industry. Although chromium removal with calcium polysulfide (CaS(5)) from drinking waters has been investigated somewhat, its removal from ion-exchange brines has not been evaluated to date. In this study, a Central Composite Design as well as experimental coagulation tests were performed to investigate the influence of pH, CaS(5)/Cr(VI) molar ratio, alkalinity, and ionic strength in the removal of chromium from IX brines.

View Article and Find Full Text PDF

Brine disposal is a serious challenge of arsenic (V) removal from drinking water using ion-exchange (IX). Although arsenic removal with ferric chloride (FeCl(3)) from drinking waters is well documented, the application of FeCl(3) to remove arsenic (V) from brines has not been thoroughly investigated. In contrast to drinking water, IX brines contain high ionic strength, high alkalinity, and high arsenic concentrations; these factors are known to influence arsenic removal by FeCl(3).

View Article and Find Full Text PDF

The presence of microcystin-LR -degrading bacteria in an active anthracite biofilter and in Lake Mead, Nevada was investigated. Four bacterial isolates from enrichment culture were identified using 16S rRNA analysis. Microcystin biodegradation tests were performed with both, the enrichment cultures and the respective isolates, using microcystin alone and acetate as carbon sources.

View Article and Find Full Text PDF

Selective ion-exchange resins are very effective to remove perchlorate from contaminated waters. However, these resins are currently incinerated after one time use, making the ion-exchange process incomplete and unsustainable for perchlorate removal. Resin bioregeneration is a new concept that combines ion-exchange with biological reduction by directly contacting perchlorate-laden resins with a perchlorate-reducing bacterial culture.

View Article and Find Full Text PDF

Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses (37Cl/35Cl and 18O/17O/16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms.

View Article and Find Full Text PDF

The most promising technologies to remove perchlorate from water are ion exchange and biological reduction. Although successful, ion exchange only separates perchlorate from water; it does not eliminate it from the environment. The waste streams from these systems contain the caustic or saline regenerant solutions used in the process as well as high levels of perchlorate.

View Article and Find Full Text PDF