This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO), a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04) in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF) induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression.
View Article and Find Full Text PDFOvarian cancer (OvCa) is the fifth most common cause of death from all cancers among women in United Sates and the leading cause of death from gynecological malignancies. While most OvCa patients initially respond to surgical debulking and chemotherapy, 75% of patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with OvCa.
View Article and Find Full Text PDFPurpose: Based upon promising preclinical and phase 1 trial results, combined flavopiridol and cisplatin therapy was evaluated in patients with ovarian and primary peritoneal cancers.
Methods: A two cohort phase 2 trial of cisplatin (60 mg/m2 IV) immediately followed by flavopiridol (100 mg/m2 IV, 24 h infusion; 21 day cycles) was undertaken in patients with recurrent platin-sensitive or platin-resistant disease (progression>vs. ≤6 months following prior platin-based therapy).
Ovarian cancer is the most lethal gynecologic cancer in women. Its high mortality rate (68%) reflects the fact that 75% of patients have extensive (>stage III) disease at diagnosis and also the limited efficacy of currently available therapies. Consequently, there is clearly a great need to develop improved upfront and salvage therapies for ovarian cancer.
View Article and Find Full Text PDFHtrA1, a member of serine protease family, has been previously found to be involved in resistance to chemotherapy in ovarian cancer although the underlying mechanism is not clear. Using mixture-based oriented peptide library approach, previously we identified X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis proteins family, as a potential substrate of HtrA1. The aim of our work is to investigate the link between HtrA1 and XIAP proteins and their relationships with chemoresistance in ovarian cancer.
View Article and Find Full Text PDF