Nowadays studies using Virtual Reality (VR) are gaining high popularity due to VR being a better approximation of the ecological environment for visual experiments than standard 2D display settings. VR technology has been already applied in medicine in the therapy of mental disorders, neurorehabilitation, and neurofeedback. However, its effectiveness compared to the standard 2D procedure is still not fully documented and limited information about the neurophysiological underpinnings of VR is provided.
View Article and Find Full Text PDFIntroduction: Exploring gender differences in cognitive abilities offers vital insights into human brain functioning.
Methods: Our study utilized advanced techniques like magnetic resonance thermometry, standard working memory n-back tasks, and functional MRI to investigate if gender-based variations in brain temperature correlate with distinct neuronal responses and working memory capabilities.
Results: We observed a significant decrease in average brain temperature in males during working memory tasks, a phenomenon not seen in females.
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder hallmarked by challenges in social communication, limited interests, and repetitive, stereotyped movements and behaviors. Numerous research efforts have indicated that individuals with ASD exhibit distinct brain connectivity patterns compared to control groups. However, these investigations, often constrained by small sample sizes, have led to inconsistent results, suggesting both heightened and diminished long-range connectivity within ASD populations.
View Article and Find Full Text PDFBackground: The study aimed to determine how the resting-state EEG (rsEEG) complexity changes both over time and space (channels). The complexity of rsEEG and its sex/gender differences were examined using the multivariate Multiscale Entropy (mMSE) in 95 healthy adults. Following the probability maps (Giacometti et al.
View Article and Find Full Text PDFMost studies on EEG-based biometry recognition report results based on signal databases, with a limited number of recorded EEG sessions using the same single EEG recording for both training and testing a proposed model. However, the EEG signal is highly vulnerable to interferences, electrode placement, and temporary conditions, which can lead to overestimated assessments of the considered methods. Our study examined how different numbers of distinct recording sessions used as training sessions would affect EEG-based verification.
View Article and Find Full Text PDFExtracting reliable information from electroencephalogram (EEG) is difficult because the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical analyses. However, recent advances in explainable machine learning open a new strategy to address this problem.The current study evaluates this approach using results from the classification and decoding of electrical brain activity associated with information retention.
View Article and Find Full Text PDFThe paper is devoted to the study of EEG-based people verification. Analyzed solutions employed shallow artificial neural networks using spectral EEG features as input representation. We investigated the impact of the features derived from different frequency bands and their combination on verification results.
View Article and Find Full Text PDFHere we attempted to define the relationship between: EEG activity, personality and coping during lockdown. We were in a unique situation since the COVID-19 outbreak interrupted our independent longitudinal study. We already collected a significant amount of data before lockdown.
View Article and Find Full Text PDFUnderstanding how art makes impressions upon the perceiver has been a fundamental topic of philosophical interest since the time of ancient Greece. However, the extent of artistic perception and aesthetic appreciation has been the topic of empirical studies only recently, following the emergence of psychology as an independent field of science. The present study discusses the hypothesis that the impression created by artwork on the viewer can be predicted by examining activity of neuronal networks.
View Article and Find Full Text PDFMounting evidence indicates that resting-state EEG activity is related to various cognitive functions. To trace physiological underpinnings of this relationship, we investigated EEG and behavioral performance of 36 healthy adults recorded at rest and during visual attention tasks: visual search and gun shooting. All measures were repeated two months later to determine stability of the results.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
We aimed to find the most effective analytical method for assessment of attention related activity to be used in neurofeedback training. We compared commonly used spectral EEG methods with those measuring signal complexity - based on calculation of entropy and fractal dimension. The 14 subjects were examined with a modified delayed matching-to-sample task.
View Article and Find Full Text PDFThe frequency-function relation of various EEG bands has inspired EEG-neurofeedback procedures intending to improve cognitive abilities in numerous clinical groups. In this study, we administered EEG-neurofeedback (EEG-NFB) to a healthy population to determine the efficacy of this procedure. We evaluated feedback manipulation in the beta band (12-22Hz), known to be involved in visual attention processing.
View Article and Find Full Text PDFEEG-neurofeedback (NFB) became a very popular method aimed at improving cognitive and behavioral performance. However, the EMG frequency spectrum overlies the higher EEG oscillations and the NFB trainings focusing on these frequencies is hindered by the problem of EMG load in the information fed back to the subjects. In such a complex signal, it is highly probable that the most controllable component will form the basis for operant conditioning.
View Article and Find Full Text PDFThe goal of EEG neurofeedback (EEG-NFB) training is to induce changes in the power of targeted EEG bands to produce beneficial changes in cognitive or motor function. The effectiveness of different EEG-NFB protocols can be measured using two dependent variables: (1) changes in EEG activity and (2) behavioral changes of a targeted function (for therapeutic applications the desired changes should be long-lasting). To firmly establish a causal link between these variables and the selected protocol, similar changes should not be observed when appropriate control paradigms are used.
View Article and Find Full Text PDFThe role of cortical feedback in the thalamocortical processing loop has been extensively investigated over the last decades. With an exception of several cases, these searches focused on the cortical feedback exerted onto thalamo-cortical relay (TC) cells of the dorsal lateral geniculate nucleus (LGN). In a previous, physiological study, we showed in the cat visual system that cessation of cortical input, despite decrease of spontaneous activity of TC cells, increased spontaneous firing of their recurrent inhibitory interneurons located in the perigeniculate nucleus (PGN).
View Article and Find Full Text PDF