Indium-based micro-bump arrays, among other things, are used for the bonding of infrared photodetectors and focal plane arrays. In this paper, several aspects of the fabrication technology of micrometer-sized indium bumps with a smooth surface morphology were investigated. The thermal evaporation of indium has been optimized to achieve ~8 μm-thick layers with a small surface roughness of R = 11 nm, indicating a high packing density of atoms.
View Article and Find Full Text PDFIn this paper, the study of defects in InAs/GaSb type-II superlattices using high-resolution an x-ray diffraction method as well as scanning (SEM) and transmission (TEM) electron microscopy is presented. The investigated superlattices had 200 (#SL200), 300 (#SL300), and 400 (#SL400) periods and were grown using molecular beam epitaxy. The growth conditions differed only in growth temperature, which was 370 °C for #SL400 and #SL200, and 390 °C for #SL300.
View Article and Find Full Text PDFWe report the first experimental parametric analysis of subwavelength monolithic high-contrast grating (MHCG) mirrors. To date, subwavelength grating mirrors have been fabricated by suspending a thin grating membrane in the air or placing it on a low refractive index material - a scheme that requires sophisticated processing and makes the gratings sensitive to mechanical stress, impeding current injection, and heat dissipation if used in active devices. Inherently MHCGs are well suited for optoelectronic devices because they can be fabricated in all possible material systems.
View Article and Find Full Text PDFThe electron-microscope image distortion generated by electromagnetic interference (EMI) is an important problem for accurate imaging in scanning electron microscopy (SEM). Available commercial solutions to this problem utilize sophisticated hardware for EMI detection and compensation. Their efficiency depends on the complexity of distortions influence on SEM system.
View Article and Find Full Text PDF